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Abstract

We examine the nonlinear inverse problem of electromagnetic induction to recover
electrical conductivity. As this is an ill-posed problem based on inaccurate data,
there is a strong need to find the reliable features of the models of electrical conduc-
tivity. We present a method for obtaining bounds on Earth’s average conductivity
that all conductivity profiles must obey. Our method is based completely on opti-
mization theory for an all-at-once approach to inverting frequency-domain electro-
magnetic data. The forward modeling equations are constraints in an optimization
problem solving for the electric fields and the conductivity simultaneously. There
is no regularization required to solve the problem. The computational framework
easily allows additional inequality constraints to be imposed, allowing us to further
narrow the bounds. We draw conclusions from a global geomagnetic depth sound-
ing data set and compare with laboratory results, inferring temperature and water
content through published Boltzmann-Arrhenius conductivity models. If the upper
mantle is assumed to be volatile free we find it has an average temperature of 1409–
1539◦C. For the top 1000 km of the lower mantle, we find an average temperature
of 1849–2008◦C. These are in agreement with generally accepted mantle temper-
atures. Our conclusions about water content of the transition zone disagree with
previous research. With our bounds on conductivity, we calculate a transition zone
consisting entirely of Wadsleyite has < 0.27 wt% water and as we add in a fraction
of Ringwoodite, the upper bound on water content decreases proportionally. This
water content is less than the 0.4 wt% water required for melt or pooling at the 410
km seismic discontinuity.
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1 Introduction

The problem of learning about electrical conductivity of the deep interior of
the Earth from time series of the magnetic field at the surface falls in the
province of inverse theory. Because of incompleteness and uncertainty, defi-
ciencies shared by all practical measurements, the information contained in
data can never furnish a precise description of the conductivity distribution,
and so an essential part of any inversion must be an assessment of the vari-
ety of possible solutions. The earliest systematic attempt to provide such a
measure was the analysis of resolution given by Backus and Gilbert (1968,
1970), applied by Parker (1970) to the question of the global geomagnetic
sounding. Backus-Gilbert theory is fundamentally a linear theory, and if the
inverse problem is nonlinear, as it is for all electrical problems in geophysics,
the equations are linearized on the assumption that any deviation from a base
model can be treated as a linear perturbation. While this is a plausible ap-
proximation for many seismological applications, the huge range of electrical
conductivities encountered even near the surface, from 4 Sm−1 in surface sea-
water to 10−5 Sm−1 in igneous rocks (Telford et al., 1990), casts doubt on its
trustworthiness for electrical problems. Furthermore, another characteristic
of the electromagnetic forward problem invalidates linear resolution theory:
a thin perfect conductor (one with infinite conductivity) introduced into a
model can cause only a finite, perhaps even a tiny, change in the measured
responses, whereas the linear theory predicts an infinite response to an infi-
nite perturbation. Consequently in the inverse problem, small differences in
the observations may be associated with arbitrarily large model variations for
which the linear approximation critically underestimates, a serious flaw in a
method for assessing model reliability (Parker, 1982).

In the usual analysis of magnetotelluric and geomagnetic data (e.g., Constable,
1993; Olsen, 1999) the range of solutions is explored by constructing regular-
ized models under a variety of penalty functions, with particular emphasis on
the solutions with minimum complexity as measured by the norm of its gradi-
ents. A much more informative approach to the question of model ambiguity
is to identify an interesting property of the model, and to use optimization
methods to find its maximum and minimum values which then supply bounds
on the quantity of interest. Oldenburg (1983) introduced this idea and ap-
plied it the electromagnetic inverse problem concentrating on the property of
conductivity averages. The same strategy has been successfully applied in a
number of linear inverse problems, in which other model properties have been
bounded (Stark et al., 1986; Parker, 1991, 2003; Parker and Song, 2005). A
key consideration in these linear problems has been the way in which inequal-
ity constraints have played a role in obtaining useful conclusions; for example,
positivity of the unknown or its gradient. In this paper we will present a
method for obtaining bounds in the nonlinear electromagnetic inverse prob-
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lem in a way that permits the natural introduction of inequality constraints
into the computational framework. The extension of computational techniques
to cover the nonlinear and nonconvex optimization problems that arise will
be the subject of the first part of the paper.

There are two complementary ways in which we can learn about the deep
interior: the first is inversion of observations made at the surface, and the
second is by studying the properties of likely materials in the laboratory. In
the case of electrical conductivity, there is broad agreement between the results
of the two strategies (e.g., Constable, 1993; Xu et al., 1998), but whether that
agreement is adequate or not must depend on the uncertainty ascribed to the
conductivity models, something known only poorly, if at all. We propose to
provide a credible assessment of those uncertainties.

2 Inversion by Homogeneous Optimization

For the purposes of this study we will need to consider only the one-dimensional
magnetotelluric (MT) inverse problem, a problem described many times be-
fore (e.g., Weidelt, 1972; Whittal and Oldenburg, 1992; Parker, 1994). Weidelt
(1972) showed that the inverse problem in a spherically symmetric Earth can
be mapped exactly into a one-dimensional MT problem of the following kind.
We treat a conducting layer in 0 ≤ z ≤ H with positive z downard, above
which there is a horizontal magnetic field varying as eiωt; the electrical con-
ductivity σ is a function of z alone. Observations are made of perpendicular
horizontal electric and magnetic fields at z = 0, which permit the estimation
of c(ω), a complex admittance given by

c(ω) =
E(0, ω)

iωB(0, ω)
= −E(0, ω)

E ′(0, ω)
(1)

where E(z, ω) is the y component of the (complex) electric field at depth z,
B(z, ω) is the x component of the magnetic induction, and prime denotes the
z derivative. For z > 0 the electric field obeys the differential equation:

E ′′(z, ω) = iωµ0σ(z)E(z, ω) (2)

which we will solve subject to the boundary conditions

E ′(0, ω) = −1, E(H, ω) = 0. (3)

Here z = H corresponds to the position of a lower boundary where a perfect
conductor is situated; in practice for our problem this is the top of the core.
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With these boundary conditions, we see from (1) that c(ω) = E(0, ω). From
measurements of time series, the admittance in (1) can be estimated at N
frequencies ω1, ω2, . . . , ωN , and so there are N versions of (2), one for each
frequency. In the broadest terms, the inverse problem consists of finding out
as much as possible about the function σ(z) from the N complex numbers
cj = c(ωj); it must be understood that these values are not known exactly,
but are associated with uncertainties, usually characterized by standard de-
viations found from spectral analysis of the original time series (e.g., Egbert
and Booker, 1986).

To make progress with the inversion we need a measure of misfit between
the predictions of a candidate conductivity model and observed admittances:
traditionally this has been based on the square of a weighted misfit:

X[σ]2 =
N∑

j=1

|cj − E(0, ωj)|2

ε2
j

(4)

where εj is the standard error of the j-th admittance, assumed here to be
the same number for the real and imaginary parts of cj. If the errors in cj

are Gaussian, then X2 will be distrbuted as χ2
2N because each frequency con-

tributes two degrees of freedom. The exact minimizer of X2 (Parker, 1980;
Parker and Whaler, 1981) consists of the sum of series of delta functions in
conductivity, and so the best-fitting profile (the D+ solution) is not a geophys-
ically plausible model. To discover smoother, and therefore more acceptable
solutions, one might minimize instead

P [σ] = X[σ]2 + λ‖dσ/dz‖2 (5)

where ‖ · ‖ is the L2 norm (Parker, 1994), and λ is a positive weight chosen
so that the solution achieves an acceptably small value of X2, typically about
2N . This is regularization. Other regularizations replace the conductivity with
its log, use second derivatives, or include a multiplicative weight w(z) in the
norm used for regularization (e.g., Constable, 1993).

To minimize the functional P a model σ(z) is guessed, (2) is solved numerically,
and the gradient of P with respect to changes in σ is calculated on the basis
of a linear perturbation analysis, which gives

cj[σ + ∆σ] = cj[σ]+ < Dj, ∆σ > +o‖∆σ‖ (6)

where ∆σ(z) is a perturbing function, < ·, · > is an inner product, Dj is
the Frechet derivative of the admittance, which is a function on the interval
(0, H); see Parker (1994). Expressed in a finite-dimensional approximation, the
inner product is just a matrix multiplication with a dense matrix D ∈ R2N×L

4



where L is the number of parameters used to represent the function σ(z). The
derivatives, Dj, and hence the corresponding matrix, D, can be written in
terms of E(z, ωj), the solutions to (2). The gradient of P with respect to σ is
easily found from D, and then (5) can be minimized iteratively using conjugate
gradients (Rodi and Mackie, 2001) or some other scheme (Constable et al.,
1987).

Models found by regularization may suggest the presence of features in the
Earth, but by themselves give no useful information about the variety of alter-
native models. To provide an answer to this question we propose a computa-
tional approach that relies on constrained optimization. Instead of employing
the two-phase strategy sketched above which alternates between solving the
forward problem and perturbing the conductivity, we treat the complex elec-
tric fields at each frequency as unknowns, in addition to the conductivity, in
a large constrained optimization system. Suppose for the sake of concreteness
we propose to minimize the function

R[σ] = ‖dσ/dz‖2 (7)

the first-derivative roughness of the solution. We apply as equality constraints
the differential equations

E ′′
j (z)− iωjµ0σ(z)Ej(z) = 0, j = 1, 2, . . . , N (8)

where Ej(z) = E(z, ωj); we include as constraints the boundary conditions

E ′
j(0) = −1, Ej(H) = 0, j = 1, 2, . . . , N. (9)

Furthermore we impose the linear inequality constraint:

σ(z) ≥ 0. (10)

Finally, we state that the solution must match the data adequately by means
of a nonlinear inequality constraint:

N∑
j=1

|cj − Ej(0)|2

ε2
j

≤ T 2 (11)

where T is a tolerance set so that the stipulated misfit would occur only rarely
by chance. Large-scale optimization in which the electric fields at all points
within the model, and at all observed frequencies, are included as unknowns
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along with the conductivity, has been introduced to solve two- and three-
dimensional regularized inversions of electrical problems by Haber et al. (2000;
2004); they call this an “all-at-once” approach.

The calculations (8), (9), and (10) will be applied to an L-vector in the finite-
dimensional approximation. The optimization system set out by equations
(7)-(11) becomes practical computationally only if we exploit the fact that
the differential operator in (8) is represented by a sparse matrix, one that can
be stored with order L values for each frequency rather than L2. Furthermore,
aside from the nonlinearity in (11), the only nonlinear term here is the mul-
tiplication of σ and Ej in (8), which makes exact calculation of the gradients
easy and fast.

The minimization of R in (7) solves a regularized inversion, but our objective
is different: we wish to place definite limits on more informative properties
of the model than the norm of its gradient. For example, to ascertain how
small the average conductivity can be in part of the mantle, say in the depth
interval (z0, z1) km, we would minimize

σ̄ =
1

z1 − z0

z1∫
z0

σ(z) dz (12)

subject to the constraints (8)–(11). In fact with the algorithm we have used,
it is computationally more efficient to replace (11) by (12) as a linear equality
constraint for a series of values of σ̄, and to minimize X2 for each one. In this
way we generate a trade-off curve between misfit and mean conductivity. The
trade-off curve intersects the tolerance level T 2 twice, once at the lower bound
on σ̄ and once at the upper bound. Thus we will solve the problem

min
σ

N∑
j=1

|cj − Ej(0)|2

ε2
j

(13)

subject to (10) and E ′′
j (z)− iωjµ0σ(z)Ej(z) = 0 (14)

E ′
j(0) =−1 (15)

Ej(H) = 0 (16)

1

z1 − z0

z1∫
z0

σ(z) dz = σ̄. (17)

Notice that the positivity condition (10) is vital in this problem, for otherwise
negative conductivities would almost certainly arise. The use of the log σ to
insure positivity, a tactic often used to avoid an explicit inequality constraint,
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is unsuitable because if the optimal conductvity vanishes anywhere (as we find
it often does) the log becomes unbounded.

The actual computational scheme we have employed is a general optimizing
program called SNOPT (Gill et al., 2002; 2005), which is based on sequential
quadratic programming (SQP) and iterative methodology which we will out-
line here. SQP finds the minimizer of an objective function f0(x) : Rn → R
subject to linear and nonlinear constraints, through a series of iterations. The
general optimization problem to be solved is

min
x,s

f0(x) subject to lx ≤ x ≤ ux and l ≤ g(x) ≤ u (18)

where g(x) : Rn → Rm is a vector-valued, possibly nonlinear function. Since
linear inequality constraints are easier to handle, we introduce a vector slack
variables, new unknowns, which convert (18) into a problem with linear in-
equality constraints and a set of nonlinear equality constraints:

min
x,s

f0(x) subject to lx ≤ x ≤ ux, l ≤ s ≤ u, and g(x)− s = 0.

(19)

To enforce (19) we introduce a vector of Lagrange multipliers π, and the
Lagrangian L by

L(x, π) = f0(x)− πT (g(x)− s). (20)

By elementary theory x∗, the stationary points of L, that is, where∇L(x∗, π∗) =
0, correspond to stationary points of f0 but the linear inequality conditions are
not yet satisfied. The solution to the problem is supplied by the Karush-Kuhn-
Tucker Theorem (Gill, 1981), which states that the minimization of L must
be over the subspace of vectors orthogonal to the gradients of the constraints.

The approach to SQP is to solve a series of subproblems with k = 1, 2, . . .
called major iterations; at each such step, a quadratic program problem is set
up that approximates the original problem based on the current best solution
vector xk, sk and the multiplier vector πk. The modified Lagrangian is

Lk(x, xk, πk) = f0(x)− πT
k (g(x)− g(xk)− g′(xk)(x− xk)) (21)

in which the constant and linear part of g(x) in the original L have been
removed. A quadratic approximation to the original problem is now set up as

min
x,π,s

f0(xk) + (x− xk)
T∇f0(xk) +

1

2
(x− xk)

T Hk(x− xk) (22)
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subject to lx ≤ x ≤ ux, l ≤ s ≤ u, and

g(xk) + g′(xk)(x− xk)− s = 0 (23)

where Hk is a approximation to ∇∇Lk. Notice that the constraints (23), both
inequalities and equality, are all linear, so that (22–23) is a standard quadratic
programming (QP) problem, which is solved iteratively. The solution of the
QP problem, x̂k, π̂k, ŝk, is not usually a good point to start the next major
iteration, because the approximations may be not good enough when xk is far
from x∗. So the next point is chosen by performing a line search on the linear
interpolation joining xk, πk, sk to x̂k, π̂k, ŝk, seeking the point that reduces f0

sufficiently to initiate the next major iteration.

The SQP method sketched above and realized practically in SNOPT has been
applied to (13-17) and (10), and after application of SQP, Weidelt’s transfor-
mation is done to account for spherical geometry. Finally, we note that the
choice of the function to minimize in (12) is surprisingly restricted if infor-
mative results about averages are to be discovered. For example, one might
seek to minimize the average of log conductivity in an interval, which seems
natural given the large range of conductivity values found in Earth materials.
However, there is no finite lower bound on the function, because a thin layer of
zero conductivity would drive the mean value of log conductivity to negative
infinity, yet such a layer would, if thin enough, have negligible effect on the
admittances. The same argument applies to averages of resistivity.

3 Results from Global Sounding Data Sets

Because we are considering the one-dimensional MT inverse problem, we desire
data that represent average radial structure over large areas. Two data sets
that have this property are from Constable (1993) and Olsen (1999). Constable
provides a 15 complex point set compiled from land observatories around the
globe. Olsen compiles a set of 23 complex points from land observatories in
Europe only, but over a much larger frequency range than Constable used. We
would like to invert a combination of these data sets so our conclusions can be
as strong as possible. However, we need to make sure we are inverting a data
set that is indeed representative of one-dimensional structure. We use the D+

solution discussed earlier as a guide for selecting a one-dimensional data set
by checking that the exact minimizer of X2 ≈ 2N (Parker, 1980; Parker and
Whaler, 1981). The combined set of all 38 admittances has a D+ solution with
X2 too large. The most significant contributors to the large X2 are the longest
and shortest period admittances from the set Constable compiled, and the six-
month period and ten-day period admittance from the set Olsen compiled. We
remove these four admittances from the combined data set on the following
justifications in respective order.
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(1) As discussed by Petersons and Constable (1996), as the period gets longer
in the data from Constable, the P 1

0 source-field assumption used in the
calculation of the admittance breaks down. Olsen does not make a P 1

0

source-field assumption in his long period data.
(2) The shorter period data explore shallower structure. Presumably shal-

lower structure has more global variation than deeper structure so the
European bias from the data complied by Olsen would be expected to
represent a one-dimensional structure that differs from the average global
one-dimensional structure. We choose to keep the short period data from
the European compilation and remove the global shortest period datum
to make the sets compatible. An analysis of daily variation was used in
the collection of the short period European admittances making them
more reliable than those relying on the P 1

0 assumption. We accept the
risk that we may be biasing the shallow inversion results towards Europe.

(3) Olsen himself excludes the six-month period admittance from his analy-
sis of his European compilation since the assumption about the relative
noise-to-signal ratio he made may fail at that period.

(4) The only surprising part of the D+ solution on the combined 38 admit-
tance set was the large contribution of the ten-day period datum from
Olsen to the overall X2. This datum has an error bar half the size of
those of the surrounding data. Since we have no basis for adjusting the
error, we removed this data point.

The combined 34 admittance set is plotted in figure (1) along with the D+

solution. The D+ solution puts a perfect conductor at 2430.5 km, which cor-
responds to the top of the core after Weidelt’s spherical transformation. The
minimum X2 is 72, reasonable for a one-dimensional data set of this size.

We perform the optimization with the combined data set and find bounds
on σ̄ of (12) over parts of the mantle. Interesting parts of the mantle are
the upper mantle (0, 410) km, the transition zone (410, 670) km, and the top
1000 km of the lower mantle (670, 1670) km. Sensing the bottom of the lower
mantle is problematic because very long time-series of the magnetic fields are
needed and furthermore it is difficult to properly remove the secular variation
prior to the estimation of the admittance functions. Thus we prefer to limit
our results to the top of the lower mantle. We assume the errors in cj are
Gaussian and choose the tolerance level T 2 of equation (11) to be the 90%
left-tail probability, i.e. level, of the χ2

2N distribution. We solve for σ(zk) at
discrete points k = 1, 2, . . . , K, as this is a numerical optimization problem.
The optimization was done with K = 21, K = 31, and K = 61; no significant
difference in the bounds resulted. The reported bounds have K = 31. Because
the discrete points are evenly spaced in the chosen computational framework,
the actual regions of the mantle are (0, 418), (418, 672), and (672, 1666) km.
The resulting bounds on σ̄ over the three parts of the mantle are given in table
(1).
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Fig. 1. Complex conjugates of admittances used in inversion along with error bars.
Note that the error bar for the longest period imaginary admittance runs off of the
plot. The data from Constable (1993) are plotted as circles and the data from Olsen
(1999) as horizontal bars. The lines are the D+ solution.

These bounds are not based on regularization but cover all possible conduc-
tivity profiles, including highly oscillatory ones. Technically, we have tested
the hypothesis that the greatest value of the mean conductivity in the suite
of all models consistent with the data falls below the stated bound; the test
is performed at the 90% probability level. The lower bound is obtained in a
similar way. The interval between the bounds does not correspond to the stan-
dard 90% confidence interval for average conductivity as we have not made
a statistical estimate of average conductivity itself. Although the bounds are
fairly restrictive, we can narrow them further if we are willing to make addi-
tional assumptions. To the first-order, conductivity is a thermally activated
Boltzmann process of the form

σ = σ0e
−A/kT (24)

for a constant σ0, activation energy A, Boltzmann’s constant k, and temper-
ature T . Thus it is commonly accepted that conductivity increases monoton-
ically with depth due to increasing temperature, or

dσ/dz ≥ 0. (25)

We add (25) as a constraint to our previous optimization problem (13)-(17),
and achieve more restrictive bounds on σ̄ reflected in table (1).
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Table 1
90% χ2 level bounds on the average value of conductivity, σ̄

Added constraints σ̄ in Sm−1 for depth interval in km

[0 418] [418 672] [672 1666]

none a 0.002≤ σ̄ ≤0.025 0.020≤ σ̄ ≤0.276 1.09≤ σ̄ ≤2.76

monotonicity b 0.013≤ σ̄ ≤0.017 0.120≤ σ̄ ≤0.193 1.61≤ σ̄ ≤2.10

a conductivity allowed to increase and decrease with depth
b conductivity allowed to only increase with depth

Fig. 2. Bounds on average conductivity. The gray boxes are the ranges without con-
straining monotonicity of σ; the black are the restricted ranges with monotonicity.

We show the bounds in figure (2). The gray boxes are the ranges of average
conductivity without constraining (25), monotonicity of σ. The black boxes are
the restricted ranges with monotonicity. We stress that the regions delineated
in figure (2) are not error bars for a particular model of conductivity; they
indicate the permitted range in average conductivity of every possible model
that fits the sounding data. We now proceed to draw conclusions about mantle
properties from these bounds.

4 Mantle Temperature

The conductivity of likely materials of the mantle has been studied extensively
in the laboratory. These experiments give us empirical equations relating the
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conductivity of the material to its temperature. Clearly the conclusions we
draw will only be as reliable as the laboratory results but we must start some-
where.

We first look at the upper mantle. The mineralogy of the upper mantle is dom-
inated by olivine. The next most abundant mineral is clinopyroxene, which
has a conductivity-temperature relationship similar to that of olivine and so
models of upper mantle conductivity are often based on olivine. We used the
SEO3 model for the olivine temperature–conductivity relationship (Constable,
2006). SEO3 is based on a Boltzmann model of defect mobilities and concentra-
tions obtained from relatively low-temperature conductivity and thermopower
measurements on a natural, silica-buffered, rock, thus avoiding the alteration
that often occurs during high-temperature laboratory measurements of con-
ductivity. See Constable (2006) for the equations. Recent measurements on
single crystal olivine by Du Frane et al. (2005) have a much lower apparent
activation energy, and would result in much higher temperature bounds. The
Du Frane et al. paper serves to illustrate the difficulty that still exists in ob-
taining representative laboratory data sets, as well as the gaps that remain in
our understanding of electrical conduction mechanisms, even in well-studied
minerals such as olivine. Until these gaps are filled, our use of SEO3 is based
on a preference for data originating from poly-phase, poly-crystalline samples,
and the thermodynamic model behind the temperature extrapolation.

Using the SEO3 model for a mantle at an oxygen fugacity determined by
the quartz-fayalite-magnetite buffer, our monotonic bounds of 0.013 ≤ σ̄ ≤
0.017 Sm−1 predict an average temperature of 1409–1430◦C, in excellent agree-
ment with conventional estimates of an adiabatic mantle temperature (Schu-
bert et al., 2001). The temperature bounds are highly dependent on the con-
ductivity model chosen, and even other parameters such as mantle oxygen
fugacity. For example, using our bounds the SEO3 model predicts an aver-
age temperature range of 1515–1539◦C for mantle with an iron-wüstite buffer.
However, all calculated ranges are too close to the conventionally accepted
temperatures to support the idea of a significant conductivity associated with
volatile content in the upper mantle (e.g., Karato, 1990).

We perform a similar comparison with the laboratory research on the likely
conductors of the lower mantle. The conductivity of the lower mantle is most
likely governed by silicate perovskite containing 4 to 5% Al2O3 by weight (Xu
et al., 1998). Although the lower mantle is 20% magnesiowüstite by volume,
the perovskite phase is thought to be not insulating enough and the magne-
siowüstite not interconnected enough for magnesiowüstite to contribute sig-
nificantly to the conductivity structure of the lower mantle (Martinez et al.,
1997; Xu et al., 1998). Xu et al. propose the following model of the aluminum-
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bearing perovskite conductivity:

σ = 74e−0.70eV/kT Sm−1. (26)

We calculate the average temperature of the top 1000 km of the lower mantle
as we did with the entirety of the upper mantle. We assume monotonic growth
of σ with depth so that 1.61 ≤ σ̄ ≤ 2.10 Sm−1. Then with (26) we constrain
the average temperature of the top of the lower mantle to be be 1849–2008◦C,
within the range obtained by considering the adiabatic gradient (Schubert et
al., 2001). If the magnesiowüstite is considered interconnected, the calculated
average temperature would be implausibly low since magnesiowüstite is much
more conductive than aluminum-bearing perovskite (Dobson and Brodholt,
2000).

5 Water Content of the Transition Zone

High pressure phases of olivine control the conductivity of the transition zone.
Olivine deforms into its β-phase, Wadsleyite, at 410 km and its γ-phase, Ring-
woodite, at 520 km. These minerals have a much higher water solubility than
that of the upper and lower mantle minerals, and Bercovici and Karato sug-
gested in 2003 that the transition zone may act as a water reservoir. Fur-
thermore, they proposed that the water content of the transition zone may
exceed the critical concentration so that water pools and creates partial melt
at the 410 km seismic discontinuity. Melt here would have a large effect on
the geochemical cycling in Earth. The critical concentration of water would be
reached if the transition zone had more water than the storage capacity of the
upper mantle. This storage capacity was originally inferred by Kohlstedt et
al. (1996) as 0.16 wt% water. However, recently Hirschmann et al. (2005) sug-
gest that Kohlstedt et al. underestimated the water concentration in olivine
by their use of the Paterson method (Paterson, 1982) and give a revised min-
imum capacity of 0.4 wt%. So, do our conductivity bounds support a water
content of more than 0.4 wt% in the transition zone?

Huang et al. (2005) give an empirical conductivity model of the transition
zone as a function of water content and temperature based on the equation

σWad,Lab = 380C0.66e−0.91eV/kT Sm−1 (27)

for Wadsleyite, and

σRing,Lab = 4070C0.69e−1.08eV/kT Sm−1 (28)
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for Ringwoodite, where σLab is the conductivity estimated in the laboratory
and C is water content by weight percent. Finally they set σEarth ≈ 0.5σLab to
correct laboratory oxygen fugacity to Earth oxygen fugacity. Notice that for
a given C, σRing > σWad, supporting monotonic growth of σ for a transition
zone with Ringwoodite occurring deeper than Wadsleyite.

We take a rough average of our calculated upper and lower mantle temper-
atures to get a typical transition zone temperature of 1600◦C. Huang et al.
assume a similar temperature and also note that temperature has a small ef-
fect on conductivity relative to the effect of water. We then use our calculated
bounds on conductivity to find the possible range of average water content in
the transition zone. Again assuming monotonic growth of conductivity with
depth, we have the transition zone bounds 0.120 ≤ σ̄ ≤ 0.193 Sm−1. These
give us 0.08–0.15 wt% average water content if the transition zone was com-
posed entirely of Wadsleyite, and 0.01–0.02 wt% if it was only Ringwoodite.
However, if we do have melt then monotonicity will not hold locally around
410 km and our upper bound on the transition zone average conductivity
must change to 0.276 Sm−1, or 0.27 wt% water for an all Wadsleyite com-
position (0.04 wt% water for all Ringwoodite). These are simple pessimistic
end-member models which allow us to calculate water content bounds inde-
pendent of the complications of mixing laws, mineral fractions, and properties
of other minerals in the transition zone. As stated earlier, the transition zone
is believed to be over half Ringwoodite. Thus our monotonic conductivity
bounds support a water content of � 0.4 wt%, suggesting that there will not
be melt or water pooling at the 410 km seismic discontinuity.

6 Conclusions

We have used an optimization method to recover radially averaged conductiv-
ity from geomagnetic sounding data, a nonlinear inverse problem. The opti-
mization method allowed us to find bounds on the average conductivity over
parts of the mantle, and to add constraints to tighten these bounds. We did
not use regularization. We then used these bounds to draw conclusions about
the temperature and water content of the mantle through empirical relations
measured in the laboratory. Our conclusions clearly are dependent on the
fidelity of the laboratory measurements.

Our upper mantle bounds along with the laboratory conductivity model of
dry olivine constrain the average temperature to be 1409–1539◦C, which is
close to conventionally accepted temperatures. If the mantle oxygen fugacity
is known this range can be tightened further. In any case, our work supports
an almost volatile-free upper mantle. The lower mantle calculations are based
on laboratory conductivity studies of perovskite with aluminum. Here our
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conductivity bounds constrain the average temperature of the top 1000 km
of the lower mantle as 1849–2008◦C, again agreeing with conventional values.
Using an assumed average temperature of 1600◦C in the transition zone, our
bounds constrain an absolute upper limit on average water content of the
transition zone of 0.27 wt%, or 0.15 wt% for a monotonic conductivity profile.
This is for a completely Wadsleyite transition zone; as Ringwoodite is added
to the composition the upper limit decreases fractionally. We conclude that
the transition zone is unlikely to have melt or water pooling at the 410 km
seismic discontinuity as a global feature. As our conductivity bounds are radial
averages, local melt or pooling is possible as long as the net conductivity is
balanced elsewhere.

The code used in generating average conductivity bounds from any given set of
admittances is available at http://mahi.ucsd.edu/parker/software.htm.
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(Mg, Fe)O magnesiowüstite assemblages: An analytical transmission elec-
tron microscopy study. J. Geophys. Res. 102, 5265-5280.

[20] Oldenburg, D.W., 1983. Funnel functions in linear and non-linear ap-
praisal. J. Geophys. Res. 88(NB9), 7387-7398.

[21] Olsen, N., 1999. Long-period (30 days-1 year) electromagnetic sounding
and the electrical conductivity of the lower mantle beneath Europe. Geo-
phys. J. Int. 138(1), 179-187.

[22] Parker, R.L., 1970. The inverse problem of electrical conductivity in the
mantle. Geophys. J. R. Astr. Soc. 22, 121-138.

[23] Parker, R.L., 1980. The inverse problem of electromagnetic induction:
Existence and construction of solutions based upon incomplete data. J.
Geophys. Res. 85, 4421-4428.

16



[24] Parker, R.L., 1982. The existence of a region inaccessible to magnetotel-
luric sounding. Geophys. J. R. Astr. Soc. 68, 165-170.

[25] Parker, R.L., 1991. A theory of ideal bodies for seamount magnetism. J.
Geophys. Res. 96(B10), 16101-16116.

[26] Parker, R.L., 1994. Geophysical Inverse Theory. Princeton University
Press, Princeton.

[27] Parker, R.L., 2003. Ideal bodies for Mars magnetics. J. Geophys. Res.
108(E1), 5006, doi: 10.1029/2001JE001760.

[28] Parker, R.L., Song, Y.Q., 2005. Assigning uncertainties in the inversion
of NMR relaxation data. J. Magn. Reson. 174(2), 314-324.

[29] Parker, R.L., Whaler, K., 1981. Numerical methods for establishing so-
lutions to the inverse problem of electromagnetic induction. J. Geophys.
Res. 86, 9574-9584.

[30] Paterson, M.S., 1982. The determination of hydroxyl by infrared absorp-
tion in quartz, silicate glasses and similar materials. Bull Mineral. 105,
20-29.

[31] Petersons, H.F., Constable, S., 1996. Global mapping of the electrically
conductive lower mantle. Geophys. Res. Lett. 23(12), 1461-1464.

[32] Rodi, W., Mackie, R.L., 2001. Nonlinear conjugate gradients algorithm
for 2-D magnetotelluric inversion. Geophys. 66(1), 174-187.

[33] Schubert, G., Turcotte, D.L., Olson, P., 2001. Mantle Convection in the
Earth and Planets. Cambridge University Press, Cambridge.

[34] Stark, P.B., Parker, R.L., Masters, G., Orcutt, J.A., 1986. Strict bounds
on seismic velocity in the spherical earth. J. Geophys. Res. 91(B14),
13892-13902.

[35] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics,
2nd Edition. Cambridge University Press, Cambridge.

[36] Weidelt, P., 1972. The inverse problem in geomagnetic induction. Z. Geo-
phys. 38, 257-289.

[37] Whittall, K.P., Oldenburg, D.W., 1992. Inversion of Magnetotelluric Data
for a One-dimensional Conductivity. SEG Monograph Ser. 5.

[38] Xu, Y.S., McCammon, C., Poe, B.T., 1998. The effect of alumina on the
electrical conductivity of silicate perovskite. Science 282(5390), 922-924.

17


