The Addition Theorem and Coordinate Rotation

Here are some notes to clarify what I said about the Addition Theorem
being a special case of the a more general coordinate rotation. Suppose
we refer all the Y;"(6, ¢) to a particular fixed coordinate system with north
pole along z. Let the unit vector & be fixed too, but allow § to move
around. Then we can view the Spherical Harmonic Addition Theorem
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as a statement that the function of § on the left has a spherical harmonic
expansion of the form
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where the coefficients are simply
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But now, suppose that we view the vector & =Z' as the z axis of another
system of coordinates. We know that in that system, the function f(8) in
(2) in in fact a spherical harmonic of degree / and order zero. In that coor-
dinate system we have that

Rl+1rf

0
O 4 DY() (4)
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where the prime ()’ means the coordinates § and ¢ are measured in the
primed coordinate system. Of course the transformation from z to z' is a
rotation. So (2) can be written
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which says how the order-zero spherical harmonic function referred to the
z' system looks when it is referred to the z coordinate system.
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