Some aspects of seismic tomography

Peter Shearer *IGPP/SIO/U.C. San Diego*

September 7, 2009 *Earthquake Research Institute*

Part 1: Global Tomography

P velocity perturbations

MIT 2006

Tomography according to Guy:

- Success depends on using all different data types: body waves, surface waves, modes.
- Data coverage is most important, theoretical and inversion considerations can play a role but are less important
- You have to do it right! Worry about source locations, crust corrections, etc.

Guy Masters

Surface-wave observations are converging among different groups

Rayleigh wave phase velocity perturbations near 12 mHz (~80 s)

Laske & Masters (1996)

But crustal corrections are very important

27.5 mHz group velocity

Crust-corrected

Crust2

Observed

Some key facts...

- Body waves have very limited vertical resolution in the upper mantle.
- Surface waves are needed to get upper mantle right.
- But surface waves are mainly sensitive to *S* waves.
- Thus, assumed *S*-to-*P* scaling for upper mantle is a common modeling assumption (but may not be true for real data!).
- Surface wave vertical resolution is better than teleseismic body waves but still not great.
- Crustal corrections are very important!

More key facts...

- Event relocation is important for *P* tomography.
- Simultaneous location/structure inversions are only practical for small problems.
- But iterative velocity and location methods work well and converge rapidly.
- 3-D ray tracing is not generally used in global tomography (unlike crustal tomo).
- Transverse isotropy is needed in upper mantle to fit both Love and Rayleigh waves.
- Including azimuthal anisotropy is challenging because of the number of free parameters.

More key facts...

- Relative weighting among different data sets and inversion regularization (smoothing) have a strong effect on the final model, in particular in the amplitude of the anomalies.
- This can account for many of the differences in the appearance of the models, even those based on similar data sets.

Heavily smoothed

Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms

C. Houser, G. Masters, P. Shearer and G. Laske

Geophys. J. Int. 174, doi: 10.1111/j.1365-246X.2008.03763.x, 2008

Christine Houser

Long-period S-wave arrivals

- Aligned on predicted (1-D) travel time
- Misaligned waveforms are due to 3-D structure
- Relative arrival times can be measured using waveform cross-correlation, but precise results depend on waveform similarity

Cluster analysis method

Works for Hilbert-transformed phases

Table	1.	Data	sets.
-------	----	------	-------

Start	End	Number of data
1976	2005	169 832
1976	2005	182 724
1995	2005	28 194
1995	2005	42710
1976	1999	27 560
1976	1999	22 595
1976	2005	26 840
1989	1999	14 000
1989	1999	42 000
	Start 1976 1976 1995 1995 1976 1976 1976 1976 1989 1989	StartEnd1976200519762005199520051995200519761999197620051989199919891999

Lowermost mantle anomalies

Shear velocity perturbations

Bulk sound speed perturbations

Anti-correlation indicates compositional variations

Part 2: Southern California results

A three-dimensional crustal seismic velocity model for southern California from a composite event method

Guoqing Lin, Peter M. Shearer, Egill Hauksson, and Clifford H. Thurber

J. Geophys. Res. 112, doi: 10.1029/2007JB004977, 2007

Guoqing Lin

Data Sets

- Study Period: from 1981 to 2005
- 452,943 events
- *P* and *S* phase arrival times
- Waveform data
- 783 SCSN stations

Composite Event Method

437,000 events 7.75 m picks ~20 picks/event

2,597 composite events (0.6%) from 2.9 m original picks (38%) ~63 composite picks/event

Method works by combining picks from events within $r_1 = 2$ km of target events, which are separated by at least $r_2 = 6$ km.

Use satellite data to fix quarry explosion locations

Data Sets

3D velocity inversion:

SIMULPS algorithm

- by *Thurber* [1983, 1993] and *Eberhart-Phillips* [1990] (documentation provided by *Evans et al.*, 1994)
- full matrix inversion method
- parameter separation
- damped-least-squares
- uses quakes + controlled sources
- outputs quake locations + Vp + Vp/Vs (+ station corrections)
- resolution matrix

The Final Vp Model

Earthquakes tend to occur in regions of low Vp/Vs ratio

Green points are Northridge aftershocks

Earthquakes tend to occur in regions of low Vp/Vs ratio

Estimating Local Vp /Vs Ratios within Similar Earthquake Clusters

Guoqing Lin and Peter Shearer

Bull. Seismol. Soc. Am. 97, doi: 10.1785/0120060115, 2007

Guoqing Lin

Obtaining in situ Vp/Vs estimates

- Obtain precise differential times using waveform cross-correlation for pairs of events within similar event clusters
- Plot of δt_s vs. δt_p will have slope that gives local Vp/Vs ratio within cluster

High-resolution *Vp/Vs* estimates in event clusters

Median Vp/Vs of clusters is 1.67 compared to 1.73 for background

Implies fluids in earthquake source regions

- No likely rock type in southern California crust has such low *Vp/Vs*
- Observations require fluid filled cracks of thick aspect ratio (e.g., 0.1)
- Roughly consistent with analysis of Nakajima et al. (2001), who used waterfilled cracks to model a ~2% drop in Vp/ Vs beneath volcanoes in northeast Japan
- Low *Vp/Vs* ratios have been widely observed in volcanic and geothermal areas—our results suggest they may also be characteristic of active areas of microseismicity, at least in southern California