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Why do earthquakes cluster in time and space?

e Earthquake triggering. Event A increases probability of
future nearby events. Very clear in aftershock sequences,

although mechanism (static vs. dynamic triggering) is
debated.

* Underlying physical changes, such as slow creep, pore fluid
pressure variations, etc. Often invoked to explain
earthquake swarms.



Southern California Seismicity
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1994 Northridge Earthquake (M 6.7)
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Omort’s Law (Omori, 1894)

n(t) = K(t+c)

1000k % *
- °
— i °
?3\. -
© 100
(- -
P C
R N 1
8 -
E 10E
= =
D) _
> 5
aa _
15 Northridge aftershocks
- °
-ml ORI 0 1 T U U 0N ¥ A T U O 0 111 AN N O O W R0 11 B SN B A N 0 11 N B A N |
0.01 0.1 1 10 100 1000

Days from mainshock



apnyubep

o
10
5 e
1 . o
.. 8
. I5s)
g S
] | % e @ 0 oluw .lh-.\.‘.“\.
8 .....m.. o
B A 3
Y o
o R :
, | ; = % . | . | NI
[e0] © an [e0] © < [aV} o
apnuubep apnyubepy
[ N A
2
Q o
O 1O
o
= N
N
Y
L
(- ™Y =
— S
e g
- 1S
S (o)}
o T
C oo o % ....o..“m.u.ﬂ ~...: )
O b 0 e
L oo so :M..ﬂ ..u..\.;.
S ‘ ‘ccmno“-}“ |.- :
1 1 1 1 ® _o uﬁ".vh_- v..—uw ”-.s
0 © <t eV} (@)

Days



Epidemic Type Aftershock Sequences (ETAS) modeling
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where: background :
A(x,t) = predicted event density | P ;
Ao = background rate (untriggered) Time
k = triggering productivity parameter
m; = magnitude of each earthquake .
[ J
mo = minimum magnitude of the counted events . " o
. [}
a ~ 1 (larger earthquakes trigger more events) .. e
t; = time from the 2th event to ¢ o r
[ J
c and p (= 1) are the Omori decay constants o o
[ J

r; = distance from the 2th event to x
q defines the decay with distance



Aftershock distance dependence (Felzer & Brodsky, 2006)

e Used relocated southern
California catalog

e Stacked “mainshocks” to get
average aftershock densities
e Results suggest g ~ 3.3 in r'4
dependence of aftershocks on
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Gutenberg-Richter relation b value, generally
observed to be 0.8 to 1.2
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productivity parameter (for
aftershock sequences, a
can be estimated from:
Bath’s Law: the largest
aftershock is about one
magnitude smaller than
the mainshock)

10° I Northridge data

0 1 4 3 4 5 6 7




Simulated catalog
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What features of real catalogs do ETAS-type models miss?

e Swarms and swarm-like behavior

e Differences in precursory activity between
target events of different sizes

* Time-symmetric time/space clustering of
small earthquakes
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I i ohn Vidale
Southern California earthquake “bursts” oln Vida
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Selection criteria: from Vidale & Shearer (2006)

e 40 events within 2 km radius 1 % et |
in 28 days | S

 fewer than 4 events in prior i h -
28 days B Lo Ry

¢ no more than 20% additional
events between 2 and 4 km
radius el

¢ 4 km
2 km
‘ .. 331
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. ° + 14 start with largest event (mainshock-like)

* 57 start with smaller event (swarm-like)



X first event

Southern California bursts

largest event

swarm-like
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Swarm-like behavior: Evidence against simple triggering cascade

o N R * Interval of steady seismicity rate
&
A | .
SH et * Tendency for largest event to strike later
AR N in sequence
% % * Large spatial extent of swarms compared
N 1 to their cumulative moment
- +¥/_ - N e fo. .
34\\\,,#;\,&; a1 * Often involve spatial migration of
Ve & seismicity
\_\(\ 4 o\ _
R \ , %5\\ N\ e Weak correlation between number of
o' B. TR A .
SN \ X \ events and magnitude of largest events
e e " e * Suggested underlying physical cause,
. such as pore fluid pressure changes and/
rkm T or aseismic slip
ol o e o .
. * Swarms are distributed across region,
()

not restricted to volcanic or geothermal
areas



ETAS-like models predict triggered
earthquakes have random sizes

5 * Triggering model provides
probability of earthquake in this
? space/time box, given the past
history of seismicity

®. e But if an earthquake occurs, its size
« 7, 1s randomly drawn from the G-R
relation

e Thus, the average precursory
seismicity behavior should be
identical before earthquakes of any
given size
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Test using LSH catalog (Lin et al., 2007)

Guogqing Lin

- 36°

e 1981-2005, relocated using
waveform cross-correlation to
precision of tens of meters

e Windowed to inside network

3% only, M = 1.5, 173,058 quakes

e Target events excluded for
several months following M >

6 mainshocks, and for 3 days
following M = 4 quakes



Space/time behavior of precursory seismicity

target event size
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Magnitude dependence of precursory seismicity rate

target event size
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Linear event density in day before target quakes

Log event density (per km)
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“Extra” precursory events at larger magnitudes

Extra events
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Extra events in each distance bin per target
event (compared to M 2-3 results) > F
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How robust 1s this result?
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Precursory Seismicity in Southern California

* Enhanced activity in 1-day period preceding M 3-5
quakes compared to M 2-3 quakes at distances of
0.5 to 2 km.

 Anomaly onset roughly agrees with expected
source radius of target quakes.

e Reduced activity at shorter distances.
e Not usetul for prediction of individual quakes.

e These anomalies are NOT predicted by standard
earthquake triggering models.



Aftershock study of Rubin & Gillard (2000)

* High-precision relocations of
4300 quakes on central San
Andreas Fault

e Plot shows first event following
M 1-3.5 mainshocks, scaled by
expected source radius of
mainshock, assuming 10 MPa
stress drop

Dip separation / nominal rupture radius

e “Hole” indicates likely slip

Strike separation / nominal rupture radius plane

e Areally nice study!
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Felzer & Brodsky (2006), revisited

* Picked target events with no larger earthquake

within 3 days before and 0.5 day afterward

e Plotted events within 30 minutes after M 3—4 targets
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But similar behavior seen before target earthquakes
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Behavior for M 2-3 targets 1s nearly time-symmetric

M 2-3 targets
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Felzer & Brodsky (2006), revisited

* Picked target events with no
larger earthquake within 3 days
before and 0.5 day afterward LSH catalog results

e Plotted events within 5 minutes
after M 2—-3 and M 3—4 targets
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M 2—4 triggering only resolvable to distances of 1 to 3 km

e F&B exclusion criteria

e M>1.5

e + | hour from target event times

LSH catalog, M 2—3 targets
1.5
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What causes precursory clustering?

Simple AB/BA symmetry argument?

B B
® ®
A‘ aftershock implies A‘ target
target > foreshock

No! Plots are only of events smaller than targets.

B A

[ ]
A aftershock tarcet
o C. :

target foreshock



What causes precursory clustering?

Expected behavior from foreshock triggering?
(sometimes mainshocks are really big aftershocks)

To test this, I performed 100 simulations of S. Calif.
seismicity using Aftsimulator.m program (Karen Felzer)
witha=1,p=1.34, g =3.37, G-R relation with b = 1
A\o(X) = background rate for S. Calif. (Andy Michael)

1

A(x,t) = Xg+ X w100 (¢ 4 ) P



Log event density (per km)

Log event density (per km)
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What causes precursory clustering?

e Simulations suggest that the bulk of time-symmetric
clustering for M 1.5—4 earthquakes in southern

California 1s not caused by ETAS-like triggering, but by
some other process.

e More simulations are needed to test this conclusion, but
it’s hard to see how runs that satisfy Bath’s Law will
produce time-symmetric behavior.

 Swarms provide additional evidence for an underlying
physical driving mechanism for clustering.

e Important issue for earthquake prediction (ETAS
models are totally random and limit how good
predictions can be).
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