





Anelasticity postulates

1. For every stress there is a unique
equilibrium value of strain and vice
versa

2. The equilibrium response is achieved
only after the passage of sufficient
time

3. The stress-strain relationship is linear

Some Comments

Anelasticity is just like elasticity, plus the
time dependence postulate

There can be an elastic component of the
deformation in addition to the time-dependent
component

Recovery is also time dependent
Linearity is taken in the mathematical sense:

o(og + Be,) = ao(g) + Bo(e,)

Comparison of Rheologies

Unique equilibrium Instan- Linear
(complete recoverability) taneous

Ideal Elasticity Yes Yes Yes
Nonlinear Yes Yes No
elasticity

Instantaneous No Yes No
plasticity

Anelasticity Yes No Yes
Linear visco- No No Yes
elasticity

Thermodynamic Substance

A thermodynamic substance is one which can
assume a continuous succession of unique
equilibrium states in response to a series of
infinitesimal changes in an external variable.
Such a substance satisfies the first postulate of
anelasticity

Plastic and visco-elastic solids do not qualify as
thermodynamic solids

The time dependence is captured in the word
relaxation, (often anelastic relaxation), a
thermodynamic phenomenon.




Anelastic responses
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Conservation Laws aa—fwx.(w_n:[(

Law F J
Mass p 0 0
Momentum| pV T pb
Energy | pE |TsV-q |p(beV+h)

p= density b= body force density
V= particle velocity q= heat flux vector
T = Cauchy stress tensor h= heat source density
E= u +%V-V u= internal energy density

Internal Energy balance

= By combination of conservation laws:
dpu
% +(puV, + qi),i = szDij +ph
= Where D;=(V,;+V,)/2
is the rate of deformation tensor

= Equations may be generalized to include
other, nonmechanical fluxes (e.g. electrical,
etc.) g must then be generalized as well.

Linearized Near-Equilibrium
Thermodynamics (LNET)

Postulates:

. Local thermodynamic equilibrium
. Linearity of phenomenological

equations

. Onsager-Casimir symmetry relations

(invariance of equations of motions
under time reversal)
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L.N.E.T. Postulate 1

= Even though a system may not be in a
state of global equilibrium, infinitesimal
elements may be in local equilibrium,
and the functional dependence of state
functions on state parameters is the
same as in the case of equilibrium in
classical thermodynamics.

= | eads to Gibbs relations
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Caloric Equation of State

= Energy density determined by thermodynamic
state, ie entropy density and state variables
u=u(s,v,...,v,,&,....&)
= Macroscopically observable variables and
conjugate thermodynamic tensions:
v.,i=L..,m conjugateto T, i=1,..m
= Internal (unobservable) variables, and

associated affinities
éj, j=1...n associated with A;, j=1,...,n

Gibbs relations

= Gibbs relation reads
du=Tds + i’cidv[ - iAjdéj
» T is temperature, s is entropy. For
locally adiabatic processes, then

du = Tedv — A«dg

Thermal Equations of State

= Expand tensions and affinities near
equilibrium

T 7 P, P,lv-V°
|:_Ai| - |:_A0:|+ |:P21 P22i||:E.u - E.»Oi|

= Equilibrium values (0 superscript) will be
set to zero (WLOG)

Maxwell’s Relations

» u is a perfect differential. The order of
differentiation is immaterial, so the
matrix P is symmetric:

P11=P1T1 > P22=P2T2 > P12=P1T2
= Stable equilibrium: u must be a

minimum for given 1, A. So P must be
positive-definite.




Nota bene..

= 1 are thermodynamic tensions for which u is
a potential. If vare strains, then t are stresses
only if the external stress work is recoverable
(eg adiabatic or isothermal processes with
resersible heat transfer)

= |n general, the dynamic stress tensor is not
identifiable with the thermodynamic tensions.
The difference is called the viscous stress
tensor.
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Entropy balance (1)

* Introduce dynamic tensions 1P as the
observable quantities,then

Jpu

= +(puV; +q,); =T;D; + ph
is of the general form:

pﬂ =-Veq+K, where K, 6= irib\'/i

dt i=1

= Hence from the Gibbs relation, the entropy
balance reads:

Entropy balance (2)

ds q
= =_Veo+K
pdt TJr :
= Where the entropy source strength is
1 .1 . VT«
K,=—(1"—1)v+—As -
' T( ) T ¢ T’

= The Dissipation function is

1 1
D =—TK, of the general form D = EZXI.H,.
2 i
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Entropy balance (3)

1
D = 5ZX,H,.

By comparison with the earlier expressions, X; are
called generalized thermodynamic forces and H;
generalized fluxes

The 2nd Law requires that D be a nonnegative
function that vanishes only for reversible processes.
This is expressed through the Clausius-Duhem
inequality
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2nd Law of Thermodynamics

» Strong form of Clausius-Duhem inequality: we

require that, separately:

2D,0 =(T° =T}V +AE >0

VT
2Dcmuiuction == T 1 20

The second inequality constrains the heat
conductivity tensor. The first one leads to anelastic
relaxation

M

L.N.E.T. Postulate 2

= Near equilibrium the generalized fluxes
are related to the generalized forces
through linear phenomenological
equations:

1
H =Y L,X; sothat D=-X'LX
J

2nd Law requires L to be nonnegative

42

L.N.E.T. Postulate 3

(controversial)

» |In the absence of pseudo-forces such

as Coriolis or Lorentz forces (which may
change sign under time reversal), the
equations of motion of individual
particles are invariant under time
reversal, i.e. L is symmetric (Onsager-
Casimir reciprocal relations):

L' =L

Anelastic Evolution Equations

= Assume all rates dv/dt and d&/dt
participate in entropy production (i.e.
eliminate algebraically the reversible
ones), then L is positive definite
symmetric and possesses a Cayley
inverse D=L, itself symmetric.

» Go back to K and identify terms...
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Anelastic Evolution Equations

VT.q
T2

=— .|+
-A D1T2 Dzz &_ 0
Combine with Thermal Equations of State, viz

T 7° P, P, [v-v*
|:_Ai| - |:_A0:|+ |:P21 P22i|_E.u = E.»Oi|

1 .
— D_ .' —_ o —
K, = (’c t)v+TAF;

s

Anelastic Evolution Equations

|iD11 D12:| v +|:P11 P12:||:Vi| _ T’
D1T2 D22 E_; Psz Pzz g 0
adopt a common notation y for all state variables
(macro and internal), and define the quadratic form
1
P=—y"P
2X X

we find the familiar Lagrangean equations of evolution

oD 0P Where y; are generalized displacements
W + @ =9, and Qi are generalized forces, and P a
i d potential function
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Solving the equations (1)

= Assume zero initial conditions,and take
Laplace transforms rq)— F(s)

sD, +P, sD,+PB, ]V _ T’
SDsz + I’lg sD,, + P, E - 0
2nd Law requires D,,to be positive definite,

so D,, and P,,can be simultaneously
diagonalized.
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Solving the equations (2)

= Solve the generalized eigenvalue problem
Pzzg - ADzz‘t: =0

n eigenvalues A, k=1,...,n, are solutions of the
secular equation:

det|P, — AD,,| =0
The corresponding n eigenvectors are called relaxation
modes; they are D,,-orthonormal linear combinations of
the (coupled) state variables, and are the columns of a
matrix W defining the diagonalizing transformation.
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Voigt Model (Voigt unit)

/og

No elastic
response!

Maxwell Model (Maxwell unit)

)
oo

0
applied

T6+0=TME
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Bolztmann After-Effect equations

» Linearity means that the responses may
be cast as convolutions cast as Stieltjes
integrals (superposition principle) :

e(t)=J(t)*do(t) = j J(t—1)do(t’)

o(t)= M(t)* de(t) = j M(t—t))de(t’)
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Bolztmann After-Effect equations

= For a medium initially at rest and in
equilibrium:

d t ’ ’ ’
e()= E ‘0|' J(@t—t")o(t")dt

d "t 7 7 7
o(:)_EB[M(t—t Ye(t)dt

Current state depends on all previous history with
an exponentially fading memory

Use of Transforms

= Apply “Carlson”, or s-multiplied Laplace transform

£(s)= sje’:'s(t)dt o' (s)= sTe’“o‘(t)dt e elC

0 0

Then, the Boltzmann after-effect equations read:
e (s)=J (s)o (s)
o (s)= M (s)€"(s)

Looks functionally just like linear elasticity! This is
known as the Correspondence Principle

Use of Transforms

J*(s) and M*(s) are known as the operational
compliance and operational modulus, respectively.

If we effect the change of variable from s toiw, we get
the complex compliance J*(io) and complex
modulus M*(im), which are useful for analysis in the
frequency domain (Fourier instead of Laplace
transforms).

We have the limits:

: [M*(S)J ) [M*(iw)] (MR) : [M‘(s)j : [M*(iw)] (Muj
lim| =lim| = 5 lim| =lim| =
=0 J'(s) ) o=o\ J (i) Jr R WAOY G W) Jy

60
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Expressions for Q

Energy loss per cycle, and average energy in cycle are:
AE() = §ode = —n|o, | Im[J ()] = ne, [ Im[ M (@)]

2 X 1, *
(E)=%|0'0| Re[J (w)]=z|£0| Re[M ()]

So that we get the remarkably simple result:

J'(iw) = J () - i],(®) en O = M,(®) J,(®)
M (i0) = M,(0)+iM, (o) T M () J(0)

Notes

The real parts M, and J, are called the storage modulus and
compliance, and are monotonic functions of frequency, from Mg
and Jg at long periods to M, and J; high frequencies.

The imaginary parts M, and J, are called the loss modulus and

compliance, show a maximum at intermediate frequencies, and
vanish at low and high frequencies.

The phase difference between stress and strain is given by:
-1
tang =0 (w)
@ is known as the loss angle. It is frequency-dependent
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Advanced notes...

Because of frequency dependence of the complex
modulus and compliance, there is physical dispersion.

In the time domain J(t) and M(t) are required to be
“causal”, so effects do not precede causes. They must
vanish for t<0. This requires that the Kramers-Kroénig
relations be satisfied, namely that the real and
imaginary parts of J* and M* be Hilbert transform pairs.

17M 15M
M@= [T )= [T

s

Key Point: wave propagation speed and attenuation

are not independent functions of frequency

Simple Dynamical Problems

Consider a one-dimensional wave propagation problem
2 "+
png: = pii = ‘;—j, where o(t)= %_([M(t —)e(t')dt!, and = g—z =uf?
Take transforms,and specialized to monochromatic case:
ps*u’ — M (su” =0
(M, +iM,)u” + pw’ii =0

(Asterisks denote Laplace transforms, bars Fourier
transforms). Introduce the complex wave number:
K (w)= pa’[(M, +iM,)= pw*/M,(1+iQ™"), Rek>0

68
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Traveling waves

In terms of the wavelength A, we get, for low loss:

|u =u, [iw[t —x/ c(a))]]exp[—n’x/QlH

The amplitude is thus controlled by the number of
wavelengths traveled by the wave. For a fixed path
length x, a broad-band pulse, and a frequency-
independent Q model, the high frequency
components (short wavelengths) are more
attenuated than the long-period components (long
wavelengths).

Summary: low-loss results

For Q' << 1 we have:

|Q‘1=tan(p=(p=6/7r=al/7t|

Near a resonance peak at frequency o, with peak

width A,

Measurements of o, for forced or free vibrations, or
measurements of the phase velocity c(w) in traveling
wave experiments yield an estimate of the real part of
the modulus M(w) at the frequency .
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Part 6:
Absorption bands

Ll Q
79

Seismic problems

= Seismic pulses tend to be broad-band

= Q is observed to depend little on
frequency over a broad range of
frequencies

= We need to specify a broad relaxation
(or retardation) spectrum, or the creep
(or relaxation) function.

» What is usually done is to specify Q(w)
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Scaling parameters

Define 7/ =ar, ; ¢ =bqg ; t;,=ct, ; T =dt
We obtain the scaling law for time variables

[T]e fl)P ; P=(qt,7,;")" "

...and for amplitudes

[A] e f ' (@)P!

The scaling function f(a) is a decreasing function of o

85

Q operator

For low loss:

-the arrival time is
slightly later than the
unrelaxed arrival time
(“pedestal”)

is less than the
unrelaxed velocity

- The colored area is
preserved during
propagation. Amplitudes

decay, times lengthen.

»
1::t-tU

- i.e. the “signal” velocity
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Q Operator scaling

The scaling laws do not apply if Q is very small,
strongly frequency-dependent, or if the characteristic
time in the creep law is comparable to the travel time.

In the limit of o very small, Q(w) becomes nearly constant
for low enough frequency.
For o < t,," we have the limiting scaling law:

iy 2. 1.
[T]'xf(O);E—f(O)ﬂt =5t

The parameter t* is commonly used in seismology. It
assumes implicitly that Q is frequency independent.
87

Propagation

We have seen that body wave attenuation leads to a
scaling of the pulses controlled by the parameter:

Travel time

£ =t [Q=—————
v/Q Quality factor

Because Q varies along the path of seismic waves, we
must estimate that parameter by integration along the

path:

rojdg s

ii=1 i

22



Using linearity

For linear wave propagation (weak motions)
attenuation effects can be handled using the usual
tools: Green function, transfer function, convolution &

deconvolution, etc.
A seismogram s(t) can then be written as the convolution
of a source or input pulse w(t) with a response function
r(t). For a layered structure, the latter is often formulated
as a reflector series.

s(t)=w)*r() ; s(@)=w@)r(o)
If w(t) and s(t) can both be measured independently, the

response function is obtained by deconvolution
89

Deconvolution

Formally, we have:

r(@)=s5()/w(w)

This frequency-domain deconvolution is simple, but is vulnerable to
instabilities. For instance, near frequencies where the denominator
is small (or even zero) the result blows up. A method often used to
stabilize the procedure is to pre-whiten the denominator using a
“water level” approach...basically replacing values smaller than a
threshold by that threshold value. More sophisticated approaches
involve estimation through regularized inversion.

The response function contains both the effect of wave propagation
through an inhomogeneous structure and wave attenuation. With
additional independent observations (e.g. well log) one can attempt
to separate the two effects.
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Homework

1. Derive the energy balance equation on slide 30
2. Compute the Q operator defined by the inverse Fourier transform:

1 7 . .
A(x,t)=— | e ™ de

For the case where the dispersion is given by

1 w
c(w)= c(w0)|:1 + EIH[GTOH

And Q >> 1 (low loss). Use 1 Hz for the reference frequency, 1 km/s
for the reference phase velocity, Q = 100. Compute the attenuated
pulses at 10, 100, and 1000 reference wavelengths. Do not be shy
about the size of the FFT you use (plot the integrand in the

frequency domain to see the range of frequencies you need). o1

23



