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Part 1:  Generalities

3

Attenuation

 Energy is lost to heat

 Not explained by theory of elasticity

 Many mechanisms, most of which operate at
the microscopic level

 “slight” departure from elastic behavior

 Rheology based on simple considerations of
near-equilibrium thermodynamics.

 As much as possible, stick to linear theory

4

A range of rheologies

 Elasticity
 Inelasticity
 Plasticity
 Viscosity
 Viscoelasticity
 Visco-plasticity
 Elasto-plasticity
 Anelasticity
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 Linear elasticity (Green)
 Hooke’s law

 Nonlinear elasticity

 Fully reversible deformation:
Loading and unloading paths
are the same

 Equilibrium reached instantly

Elasticity

Strain

Stress

Strain

Stress

� 

σ = Kε

� 

σ = F(ε)
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Viscosity

 Linear viscosity

 Nonlinear viscosity
 Example.

 For instance, for water ice,N=3
 Perhaps for the mantle as well
 Large stress leads to low effective

viscosity
 Deformation nonrecoverable

Strain  rate

Stress

Strain rate

Stress

� 

σ = κ ˙ ε 

� 

σ ∝ ˙ ε 1/N
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Plasticity

 Instantaneous plasticity

 Rigid-plastic

 Elasto-plasticity

Strain

Stress

Strain

Stress
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Inelasticity

 Nonlinear,
nonrecoverable

 Time-dependent

 (example: material
failure)

Strain rate

Stress
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Anelasticity postulates

1. For every stress there is a unique
equilibrium value of strain and vice
versa

2. The equilibrium response is achieved
only after the passage of sufficient
time

3. The stress-strain relationship is linear

10

Some Comments

 Anelasticity is just like elasticity, plus the
time dependence postulate

 There can be an elastic component of the
deformation in addition to the time-dependent
component

 Recovery is also time dependent

 Linearity is taken in the mathematical sense:

� 

σ(αε1 + βε2) = ασ(ε1) + βσ(ε2)
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Comparison of Rheologies

YesNoNoLinear visco-
elasticity

YesNoYesAnelasticity

NoYesNoInstantaneous
plasticity

NoYesYesNonlinear
elasticity

YesYesYesIdeal Elasticity

LinearInstan-
taneous

Unique equilibrium
(complete recoverability)
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Thermodynamic Substance

 A thermodynamic substance is one which  can
assume a continuous succession of unique
equilibrium states in response to a series of
infinitesimal changes in an external variable.

 Such a substance satisfies the first postulate of
anelasticity

 Plastic and visco-elastic solids do not qualify as
thermodynamic solids

 The time dependence is captured in the word
relaxation, (often anelastic relaxation), a
thermodynamic phenomenon.
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Anelastic responses

OAE=
instantaneous
application of
stress σE

OBE=
instantaneous
application of
strain εE
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Anelastic responses

OCE= finite-time
application of
stress σE

ODE= finite-time
application of
strain εE

15

Anelastic responses

 Apply stress and
monitor strain as
a function of
time

 A: Instantaneous
load

 C: progressive
load
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Anelastic responses

 Apply strain and
monitor stress
as a function of
time

 B: Instantaneous
load

 D: progressive
load
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Creep:  definitions

 Creep experiment:

 Creep function: Unrelaxed compliance,
relaxed Compliance, Compliance relaxation

� 

σ =
0,  for  t < 0
σ 0  for  t ≥ 0
⎧ 
⎨ 
⎩ 

� 

J(t) = ε(t) /σ 0

J(0) = JU    ;   J(∞) = JR    ;   δJ = JR − JU
18

Elastic Aftereffect

 Recovery experiment

 Aftereffect function or creep
recovery function.  Depends on t1

σ =
0,     for t < −t1
σ 0 ,  for − t 1≤ t < 0
0     for t ≥ 0

⎧
⎨
⎪

⎩⎪

� 

Nt1 (t) = ε(t) /σ 0    for   t ≥ 0

19

Creep and Recovery

20

Stress Relaxation

 Stress relaxation experiment

 Stress relaxation function: Unrelaxed
modulus, relaxed modulus, modulus defect

� 

ε =
0,  for  t < 0
ε0  for  t ≥ 0
⎧ 
⎨ 
⎩ 

� 

M(t) = σ (t) /ε0

M(0) = MU    ;   M(∞) = MR    ;   δM = MU −MR
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Relationships

 Relaxation Strength (dimensionless)

MR = 1 / JR     ;     MU = 1 / JU
JR > JU    so that   MR < MU

δM = δJ / JU JR

Δ = δJ / J = δM /MR

22

Normalized Creep and
Relaxation Functions

 Normalized creep function

 Normalized stress relaxation function

 So that

J(t) = JU + δJψ (t) = JU [1+ Δψ (t)]
ψ (0) = 0   ;   ψ (∞) = 1

M (t) = MR + δMϕ(t) = MR[1+ Δϕ(t)]
ϕ(0) = 1     ;    ϕ(∞) = 0

JR = JU (1+ Δ)    ;    MU = MR (1+ Δ)

23

Linearity?

 (large) 1mm amplitude wave for 10km
wavelength gives strain O(10-7)

 Laboratory data shows rocks to be
linear for strains < O(10-6)

 Losses measured by area of hysteresis
loops.

24

Periodic Square-Wave hysteresis

Square strain deformation Square stress load
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Sinusoidal loads/deformations

Linearity implies elliptical hysteresis loops

Low frequency High frequency
26

Hysteresis implications

 The modulus (or compliance) depends
on frequency.
 Stiff material at high frequencies

 Compliant material at low frequencies

 Wave velocity depends therefore on
frequency: Physical Dispersion

27

Part 2:  Thermodynamics

28

Balance Equations

 Away from flow singularities (eg
discontinuities) a quantity of the flow F is
conserved if:

Where V is the particle velocity at spatial
position x, FV is a “convection” (advection)
flux,J is a “conduction” flux, and K is an
intrinsic source strength

 

∂F
∂t

+∇x i(FV − J) = K
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Conservation Laws

 

Law F J K
Mass ρ 0 0

Momentum ρV T ρb
Energy ρE TiV - q ρ(biV + h)

 

ρ = density            b = body  force density
V = particle velocity           q = heat   flux vector
T = Cauchy stress tensor           h = heat  source density

E = u + 1
2
ViV            u = internal  energy density

 

∂F
∂t

+∇x i(FV − J) = K

30

Internal Energy balance

 By combination of conservation laws:

 Where

is the rate of deformation tensor

 Equations may be generalized to include
other, nonmechanical fluxes (e.g. electrical,
etc.) q must then be generalized as well.

∂ρu
∂t

+ (ρuVi + qi ),i = TijDij + ρh

Dij = (Vi. j +Vj .i ) 2

31

Linearized Near-Equilibrium
Thermodynamics (LNET)

 Postulates:

1. Local thermodynamic equilibrium

2. Linearity of phenomenological
equations

3. Onsager-Casimir symmetry relations
(invariance of equations of motions
under time reversal)

32

L.N.E.T. Postulate 1

 Even though a system may not be in a
state of global equilibrium, infinitesimal
elements may be in local equilibrium,
and the functional dependence of state
functions on state parameters is the
same as in the case of equilibrium in
classical thermodynamics.

 Leads to Gibbs relations
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Caloric Equation of State

 Energy density determined by thermodynamic
state, ie entropy density and state variables

 Macroscopically observable variables and
conjugate thermodynamic tensions:

 Internal (unobservable) variables, and
associated affinities

u = u(s,ν1,...,νm ,ξ1,...,ξn )

ν i , i = 1,...,m   conjugate to τ i ,  i = 1,...,m

ξ j ,   j = 1,...,n    associated  with Aj ,   j = 1,...,n
34

Gibbs relations

 Gibbs relation reads

 T is temperature, s is entropy. For
locally adiabatic processes, then

du = Tds + τ idν i − Ajdξ j
j=1

n

∑
i=1

m

∑

 du = τidν − Αidξ

35

Thermal Equations of State

 Expand tensions and affinities near
equilibrium

 Equilibrium values (0 superscript) will be
set to zero (WLOG)

τ
−Α
⎡

⎣
⎢

⎤

⎦
⎥ =

τ0

−Α0

⎡

⎣
⎢

⎤

⎦
⎥ +

P11 P12
P21 P22
⎡

⎣
⎢

⎤

⎦
⎥
ν − ν0

ξ − ξ0

⎡

⎣
⎢

⎤

⎦
⎥

36

Maxwell’s Relations

 u is a perfect differential.  The order of
differentiation is immaterial, so the
matrix P is symmetric:

 Stable equilibrium: u must be  a
minimum for given τ, A. So P must be
positive-definite.

P11 = P11T     ;    P22 = P22T    ;   P12 = P12T
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Nota bene..

  τ  are thermodynamic tensions for which u is
a potential. If ν are strains, then τ  are stresses
only if the external stress work is recoverable
(eg adiabatic or isothermal processes with
resersible heat transfer)

 In general, the dynamic stress tensor is not
identifiable with the thermodynamic tensions.
The difference is called the viscous stress
tensor.

38

Entropy balance (1)

 Introduce dynamic tensions τ D as the
observable quantities,then

is of the general form:

 Hence from the Gibbs relation, the entropy
balance reads:

∂ρu
∂t

+ (ρuVi + qi ),i = TijDij + ρh

 
ρ du
dt

= −∇iq + Ku      where    Ku = τ i
D ν i

i=1

m

∑

39

Entropy balance (2)

 Where the entropy source strength is

 The Dissipation function is

 
ρ ds
dt

= −∇i
q
T
+ Ks

 
Ks =

1
T

τD − τ( )i ν + 1
T
Ai ξ −

∇T iq
T 2

 
D =

1
2
TKs     of  the general   form D =

1
2

ΧiHi
i
∑

40

Entropy balance (3)

 
D =

1
2

ΧiHi
i
∑

By comparison with the earlier expressions, Xi are
called generalized thermodynamic forces and Hi

generalized fluxes
The 2nd Law requires that D be a nonnegative
function that vanishes only for reversible processes.
This is expressed through the Clausius-Duhem
inequality



11

41

2nd Law of Thermodynamics

• Strong form of Clausius-Duhem inequality:   we
require that, separately:

 The second inequality constrains the heat
conductivity tensor.  The  first one leads to anelastic
relaxation

  

2Dlocal = (τ
D − τ)i ν + Αi ξ  ≥ 0

2Dconduction = −
∇T iq
T

 ≥ 0

⎧
⎨
⎪

⎩⎪

  

42

L.N.E.T. Postulate 2

 Near equilibrium the generalized fluxes
are related to the generalized forces
through linear phenomenological
equations:

 
Hi = Lij X j

j
∑     so that    D =

1
2
XTLX

2nd Law requires L to be nonnegative

43

L.N.E.T. Postulate 3
(controversial)

 In the absence of pseudo-forces such
as Coriolis or Lorentz forces (which may
change sign under time reversal), the
equations of motion of individual
particles are invariant under time
reversal, i.e. L is symmetric (Onsager-
Casimir reciprocal relations):

LT = L
44

Anelastic Evolution Equations

 Assume all rates dν/dt and dξ/dt
participate in entropy production (i.e.
eliminate algebraically the reversible
ones), then L is positive definite
symmetric and possesses a Cayley
inverse D=L-1 , itself symmetric.

 Go back to Ks and identify terms…
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Anelastic Evolution Equations

 
Ks =

1
T

τD − τ( )i ν + 1
T
Ai ξ −

∇T iq
T 2

 

τ
−Α
⎡

⎣
⎢

⎤

⎦
⎥ = −

D11 D12
D12T D22

⎡

⎣
⎢

⎤

⎦
⎥
ν
ξ

⎡

⎣
⎢

⎤

⎦
⎥ +

τD

0
⎡

⎣
⎢

⎤

⎦
⎥

Combine with Thermal Equations of State, viz

τ
−Α
⎡

⎣
⎢

⎤

⎦
⎥ =

τ0

−Α0

⎡

⎣
⎢

⎤

⎦
⎥ +

P11 P12
P21 P22
⎡

⎣
⎢

⎤

⎦
⎥
ν − ν0

ξ − ξ0

⎡

⎣
⎢

⎤

⎦
⎥

46

Anelastic Evolution Equations

 

D11 D12
D12T D22

⎡

⎣
⎢

⎤

⎦
⎥
ν
ξ

⎡

⎣
⎢

⎤

⎦
⎥ +

P11 P12
P12T P22
⎡

⎣
⎢

⎤

⎦
⎥
ν
ξ
⎡

⎣
⎢

⎤

⎦
⎥ =

τD

0
⎡

⎣
⎢

⎤

⎦
⎥

adopt a common notation χ for all state variables
(macro and internal), and define the quadratic form

 
P =

1
2
χΤPχ

we find the familiar Lagrangean equations of evolution

  

∂D
∂ χi

+
∂P
∂χi

=Q i

Where χi are generalized displacements
and Qi are generalized forces, and P a
potential function

47

Solving the equations (1)

 Assume zero initial conditions,and take
Laplace transforms

sD11 + P11 sD12 + P12
sD12T + P12T sD22 + P22
⎡

⎣
⎢

⎤

⎦
⎥
ν

ξ
⎡

⎣
⎢

⎤

⎦
⎥ =

τ D

0
⎡

⎣
⎢

⎤

⎦
⎥

F(t)→ F(s)

2nd Law requires D22 to be positive definite,
so D22 and P22 can be simultaneously
diagonalized.

48

Solving the equations (2)

 Solve the generalized eigenvalue problem

P22ξ − λD22ξ = 0
n eigenvalues λk ,  k = 1,…,n, are solutions of the
secular equation:

det P22 − λD22 = 0
The corresponding n eigenvectors are called relaxation
modes; they are D22-orthonormal linear combinations of
the (coupled) state variables, and are the columns of a
matrix Ψ defining the diagonalizing transformation.
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Solving the equations (3)

 Diagonalizing transformation:

ΨT sD22 + P22( )Ψ = sI + Λ
Λ is diagonal with elements λk

Solve the second set of evolution equations and
eliminate ξ to get:

ξ = −Ψ(sI + Λ)−1ΨΤ (sD12T + P12T )ν

τ D = P11 + sD11 − (P12 + sD12 )Ψ(sI + Λ)−1ΨΤ (sD12T + P12T )⎡⎣ ⎤⎦ ν

50

Inverse transform

General term is of the form:

τ i
D = Cij + ′Cijs +

α ij
(k ) + βij

(k )s + γ ij
(k )s2

s + λkk=1

n

∑
⎡

⎣
⎢

⎤

⎦
⎥

j= i

m

∑ ν j

which is the transform of

 
τ i
D = Cijν j + ′Cij ν j + Cij

(k ) e−λk t− ′t( )ν i ( ′t )d ′t
0

t+

∫
k=1

m

∑⎡

⎣
⎢

⎤

⎦
⎥

j= i

m

∑
Or, as a convolution integral (and changing notation):

τ i
D =

d
dt

Mij + ′Mijδ (t − ′t ) + Mij
(k ) 1− e−(t− ′t )/τ k( )

k=1

n

∑⎡
⎣⎢

⎤
⎦⎥j=1

m

∑
o

t+

∫ ν i ( ′t )d ′t

51

Comments on the solution

τ i
D =

d
dt

Mij + ′Mijδ (t − ′t ) + Mij
(k ) 1− e−(t− ′t )/τ k( )

k=1

n

∑⎡
⎣⎢

⎤
⎦⎥j=1

m

∑
o

t+

∫ ν i ( ′t )d ′t

• Discontinuities in state variables call for unbounded
dynamic forces

• Response is well-behaved only if all relaxation times τk

are positive. Since they have the sign of λk, it is
sufficient to require that the material be close to a state
of thermodynamic equilibrium

52

Part 3:
The Standard Anelastic Solid
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Voigt and Maxwell

 Two-parameter
mechanical
models

 Neither fully
satisfactory

 Jσ = ε + τ ε               τ σ +σ = τM ε
54

Three-parameter Models

 a0σ + a1 σ + a2 σ + ... = b0ε + b1 ε + b2ε....

General linear differential stress-strain equation with
constant coefficients:

Case where only first time derivatives enter:

 JRσ + JUτσ σ = ε + τσ ε           σ + τε σ = MRε + MUτε ε

55

Standard Anelastic Solid

 JRσ + JUτσ σ = ε + τσ ε           σ + τε σ = MRε + MUτε ε

Integrate…for a single relaxation time, we get:

σ (t) = MUε(t) − δM 1− e−(t− ′t )/τε( )
0

t

∫ ε( ′t )d ′t

Instantaneous elastic response + exponentially
fading memory

56

Generalization to Spectrum of
Relaxation Times

Recall: J(t) = JU 1+ Δψ (t)[ ]
M (t) = MR 1+ Δϕ(t)[ ]

⎧
⎨
⎩

Compliance response (to unit step stress)
Relaxation response (to unit step strain)
Then define the normalized retardation spectrum Ψ
and normalized relaxation spectrum Φ by:

ψ (t) = 1− Ψ(lnτ )e− t /τd(lnτ )
−∞

∞

∫

ϕ(t) = Φ(lnτ )e− t /τd(lnτ )
−∞

∞

∫

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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Bolztmann After-Effect equations

 Linearity means that the responses may
be cast as convolutions cast as Stieltjes
integrals (superposition principle) :

ε(t) = J(t)∗dσ (t) = J(t − ′t )dσ ( ′t )
−∞

t+

∫

σ (t) = M (t)∗dε(t) = M (t − ′t )dε( ′t )
−∞

t+

∫

⎧

⎨
⎪
⎪

⎩
⎪
⎪

58

Bolztmann After-Effect equations

 For a medium initially at rest and in
equilibrium:

ε(t) = d
dt

J(t − ′t )σ ( ′t )d ′t
0

t+

∫

σ (t) = d
dt

M (t − ′t )ε( ′t )d ′t
0

t+

∫

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Current state depends on all previous history with
an exponentially fading memory

59

Use of Transforms

 Apply “Carlson”, or s-multiplied Laplace transform

ε*(s) = s e− stε(t)dt
0

∞

∫              σ *(s) = s e− stσ (t)dt
0

∞

∫     ....  etc

Then, the Boltzmann after-effect equations read:

ε*(s) = J *(s)σ *(s)
σ *(s) = M *(s)ε*(s)
⎧
⎨
⎩

Looks functionally just like linear elasticity!  This is
known as the Correspondence Principle

60

Use of Transforms

J*(s) and M*(s) are known as the operational
compliance and operational modulus, respectively.

If we effect the change of variable from s to iω, we get
the complex compliance J*(iω) and complex
modulus M*(iω), which are useful for analysis in the
frequency domain (Fourier instead of Laplace
transforms).

We have the limits:

lim
s→0

M *(s)
J *(s)

⎛
⎝⎜

⎞
⎠⎟
= lim

ω→0

M *(iω )
J *(iω )

⎛
⎝⎜

⎞
⎠⎟
=

MR

JR
⎛
⎝⎜

⎞
⎠⎟
   ;   lim

s→∞

M *(s)
J *(s)

⎛
⎝⎜

⎞
⎠⎟
= lim

ω→∞

M *(iω )
J *(iω )

⎛
⎝⎜

⎞
⎠⎟
=

MU

JU
⎛
⎝⎜

⎞
⎠⎟
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General 3-D Case

In the general case (follow the treatment of elasticity):

εij = Jij
kl ∗dσ kl = σ kl ∗dJij

kl

σ ij = Mij
kl ∗dεkl = εkl ∗dMij

kl

⎧
⎨
⎪

⎩⎪

The same symmetries apply to the operational
compliance and modulus tensors as for the elastic
tensor. Similarly, for an isotropic material we only
have two creep functions, or two relaxation functions:
bulk and deviatoric.
Etc…

62

Part 5:
Waves and Vibrations

63

Q

 Energy (potential or kinetic) is transformed
into heat.  Following engineering convention
we introduce the “quality factor” Q by:

Q−1 = ΔE / 2πEpeak

where Epeak is the peak stored energy in a given
volume and ΔE the energy dissipated per cycle in the
same volume. This is OK for small losses(e.g.
electrical circuits), but runs into problems for Q<6 … All
the energy is lost in the first cycle!

64

Waves in a lossy medium

Instead, we introduce <E> the average stored energy in
a cycle, and define:

Q−1 = ΔE / 4π E

In the limit of low loss the definitions are equivalent.
Consider monochromatic stress-strain histories,i.e.

σ (t) = Re σ 0e
iω t⎡⎣ ⎤⎦   ;  ε(t) = Re ε0e

iω t⎡⎣ ⎤⎦    
Then the (complex) amplitudes are related by:

ε0 = J
*(iω )σ 0     ;     σ 0 = M

*(iω )ε0    
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Expressions for Q

Energy loss per cycle, and average energy in cycle are:

 

ΔE(ω ) = σdε = −π σ 0
2 Im[J *(ω )]∫ = π ε0

2 Im[M *(ω )]

E =
1
4
σ 0

2 Re[J *(ω )] = 1
4
ε0

2 Re[M *(ω )]

⎧

⎨
⎪

⎩
⎪

So that we get the remarkably simple result:

J *(iω ) = J1(ω ) − iJ2 (ω )
M *(iω ) = M1(ω ) + iM 2 (ω )

⎧
⎨
⎩

then    Q−1 =
M 2 (ω )
M1(ω )

=
J2 (ω )
J1(ω )

66

Notes

The real parts M1 and J1 are called the storage modulus and
compliance, and are monotonic functions of frequency, from MR
and JR at long periods to MU and JU high frequencies.

The imaginary parts M2 and J2 are called the loss modulus and
compliance, show a maximum at intermediate frequencies, and
vanish at low and high frequencies.

The phase difference between stress and strain is given by:

tanϕ = Q−1(ω )
is known as the loss angle. It is frequency-dependentϕ

67

Advanced notes…

 Because of frequency dependence of the complex
modulus and compliance, there is physical dispersion.

 In the time domain J(t) and M(t) are required to be
“causal”, so effects do not precede causes. They must
vanish for t<0. This requires that the Kramers-Krönig
relations be satisfied, namely that the real and
imaginary parts of J* and M* be Hilbert transform pairs.

M1(ω ) = −
1
π

M 2 (ς )
ς −ω

dς     ;     
−∞

∞

∫ M 2 (ω ) =
1
π

M1(ς )
ς −ω

dς     ;     
−∞

∞

∫

Key Point: wave propagation speed and attenuation
are not independent functions of frequency

68

Simple Dynamical Problems

Consider a one-dimensional wave propagation problem

 
ρ ∂2u
∂t 2

= ρu = ∂σ
∂x
, where  σ (t) = d

dt
M (t − ′t )ε( ′t )d ′t

0

t+

∫ ,   and   ε =
∂u
∂x

= ′′u

Take transforms,and specialized to monochromatic case:

   ρs2u* − M *(s) ′′u * = 0
(M1 + iM 2 ) ′′u + ρω 2u = 0
⎧
⎨
⎩

(Asterisks denote Laplace transforms, bars Fourier
transforms). Introduce the complex wave number:

k2 (ω ) = ρω 2 (M1 + iM 2 ) = ρω 2 M1(1+ iQ
−1) ,     Re k ≥ 0
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Simple Dynamical Problems

The wave equation becomes:

′′u + k2 (ω )u = 0,     where  k(ω ) = ω
c(ω )

− iα(ω )

C(ω) is the phase velocity, α(ω) is the attenuation
coefficient.  For low loss, (Q-1 << 1)

 

c(ω )  M1(ω ) ρ
α(ω ) ωQ−1(ω ) / 2c(ω )
⎧
⎨
⎪

⎩⎪

70

Forced Resonance

Seek steady state solution with boundary conditions:
u ≡ 0              at x = 0
u = u0 sinωt    at x = L
⎧
⎨
⎩

u = u0 sinωt
sin k(ω )x[ ]
sin k(ω )L[ ]The solution

has maxima in the low-loss limit near the unattenuated
resonance frequencies defined by

ωn / c(ωn ) = nπ / L
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Forced Resonance

At resonance, the denominator is:

 sin k(ωn )L
2
 α 2 (ωn )L

2  n2π 2 / 4Q2

So the shape of the resonance peak is given by

u 2 ∝ 1−α 2L2( )sin2 (ω −ωn )L
c(ωn )

+α 2L2
⎡

⎣
⎢

⎤

⎦
⎥

−1

which can be approximated for low-loss by the
“Lorentzian peak” form

u 2 ∝ ω −ωn( )2 + Q−2

4 − n2π 2Q−2 ωn
2⎡

⎣
⎢

⎤

⎦
⎥

−1

72

Resonance peak measure of Q

For low-loss (that is
Q-1<0.1) it is easy to
show that Q-1 is
measured by the
width of the
resonance peak at
half-power:

 Q
−1(ωn )  Δωn /ωn

Used in numerous laboratory determinations of Q
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Free vibrations

Seek solution satisfying boundary conditions:

u ≡ 0     at     x = 0   and    x = L
And initially vibrating at one of the eigenfrequencies ωn .
Seek solutions of form:

u = un (t)sin
nπ x
L

= un (t)sin
ωnx
c(ωn )

only has a nontrivial solution if k2 (ω ) − ωn
2

c2 (ωn )
= 0

′′u + k2 (ω )u = 0Then the wave equation:
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Low-loss free vibrations

For low loss, and ω close to ωn, expressions for k yield:

ω =ωn (1+ iQ
−1 / 2)

So that

u(t)∝ exp(iωnt)exp −
ωnt

2Q(ωn )
⎡

⎣
⎢

⎤

⎦
⎥sin

ωnx
c(ωn )

The amplitude decays exponentially, with a
logarithmic decrement given by

δ = ln un (t)
un (t + 2π /ωn )
⎡

⎣
⎢

⎤

⎦
⎥ = πQ−1(ωn )

75

Q estimates from free vibrations

Take transform:

u (ω ) = eiω tun (t)
0

∞

∫ dt = 1
αn − i(ω −ωn )

   ;      αn =ωn / 2Q(ωn )

Power spectrum:

u (ω ) 2 ∝ αn
2 + (ωn −ω )

2⎡⎣ ⎤⎦
−1

This is the same as in the case of forced vibrations!!
Measure Q from the width of resonance peaks:

 Q
−1(ωn )  Δωn /ωn 76

Traveling waves

The monochromatic traveling wave solution is of the form:

u = u0 exp iωt − ik(ω )x[ ]
Again, note that the wave number is now complex so

u = u0 exp iω (t − x / c(ω ))[ ]exp −α(ω )x[ ]
Thus α(ω) measures the amplitude decay as a
function of distance traveled. It has dimension [L]-1and
is expressed in decibel / unit length.
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Traveling waves

In terms of the wavelength λ, we get, for low loss:

u = u0 iω t − x / c(ω )[ ]⎡⎣ ⎤⎦exp −π x /Qλ[ ]
The amplitude is thus controlled by the number of
wavelengths traveled by the wave.   For a fixed path
length x, a broad-band pulse, and a frequency-
independent Q model, the high frequency
components (short wavelengths) are more
attenuated than the long-period components (long
wavelengths).
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Summary:  low-loss results

For Q-1 << 1  we have:

 Q
−1 = tanϕ  ϕ  δ /π  αλ /π

Near a resonance peak at  frequency ωn with peak
width Δωn

 Q
−1  Δωn /ωn

Measurements of ωn for forced or free vibrations, or
measurements of the phase velocity c(ω) in traveling
wave experiments yield an estimate of the real part of
the modulus M(ω) at the frequency ω.

79

Part 6:
Absorption bands

80

Seismic problems

 Seismic pulses tend to be broad-band
 Q is observed to depend little on

frequency over a broad range of
frequencies

 We need to specify a broad relaxation
(or retardation) spectrum, or the creep
(or relaxation) function.

 What is usually done is to specify Q(ω)
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A broad-band Q model

Start with “Jeffrey’s modified Lomnitz law of creep”

Δψ (t) = q
α

1+ t
τm

⎛
⎝⎜

⎞
⎠⎟

α

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Then the wavenumber is expressed as

k2 (ω ) = ω 2

VU
2 1− q

eiωτm

(iωτm )
α Γ(iωτm )

⎡

⎣
⎢

⎤

⎦
⎥

Vu is the unrelaxed wave speed, and Γ is an
incomplete Gamma function.  We have basically two
frequency regions.

82

A broad-band Q model

a)  At long periods ωτm << 1

b) At high frequencies ωτm >> 1 

 

Q(ω )  cotαπ
2

+
1+ q /α( )(ωτm )α

qΓ(α )sinαπ
2

  ;    for   small  α, Q(ω )  qπ / 2

 Q(ω ) ωτm / q

Typical range for α  is [0.1, 0.3], yielding weak
frequency dependence at low frequencies, and strong
dependence at high frequencies.
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Pulse scaling

We seek to solve a pulse propagation problem with

u(t,0) = δ (t)
lim
x→∞

u(t, x) = 0
⎧
⎨
⎪

⎩⎪

We can write the solution and an inverse Fourier
transform

u(t, x) = 1
2π

eiω te− ik (ω )xdω
−∞

∞

∫
This can be evaluated numerically, with care!
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Pulse Scaling

Change time origin to the unrelaxed travel time and
consider the low loss approximation:

tU = x /VU   ;    τ = t − tU

 
u(t, x)  1

2π
eiωτ exp −iωtU

qeiωτm

2(iωτm )
α Γ(α,iωτm )

⎡

⎣
⎢

⎤

⎦
⎥

−∞

∞

∫ dω

When q is small and τm not too large, then

 
u(t, x)  1

2π
eiωτ exp −iωtUqΓ(α )

2(iωτm )
α

⎡

⎣
⎢

⎤

⎦
⎥dω

−∞

∞

∫



22

85

Scaling parameters

Define ′τm = aτm   ;   ′q = bq  ;   ′tU = ctU   ;   ′τ = dτ

We obtain the scaling law for time variables

T[ ]∝ f (α )P   ;     P = (qtUτm
−α )1/(1−α )

…and for amplitudes

A[ ]∝ f −1(α )P−1

The scaling function f(α) is a decreasing function of α 

86

Q operator

For low loss:
-the arrival time is
slightly later than the
unrelaxed arrival time
(“pedestal”)
- i.e. the “signal” velocity
is less than the
unrelaxed velocity
- The colored area is
preserved during
propagation. Amplitudes
decay, times lengthen.
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Q Operator scaling

The  scaling laws do not apply if Q is very small,
strongly frequency-dependent, or if the characteristic
time in the creep law is comparable to the travel time.

In the limit of α very small, Q(ω) becomes nearly constant
for low enough frequency.
For ω < τm

-1 we have the limiting scaling law:

 
T[ ]∝ f (0) 2

π
tU
Q

= f (0) 2
π
t*  1

2
t*

The parameter t* is commonly used in seismology. It
assumes implicitly that Q is frequency independent.
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Propagation

We have seen that body wave attenuation leads to a
scaling of the pulses controlled by the parameter:

t* = tU /Q =
Travel  time

Quality  factor

Because Q varies along the path of seismic waves, we
must estimate that parameter by integration along the
path:

t* = dt
Q

=
Δti
Qiii=1

N

∑∫
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Using linearity

For linear wave propagation (weak motions)
attenuation effects can be handled using the usual
tools:  Green function, transfer function, convolution &
deconvolution, etc.

A seismogram s(t) can then be written as the convolution
of a source or input pulse w(t) with a response function
r(t).  For a layered structure, the latter is often formulated
as a reflector series.

s(t) = w(t)∗ r(t)   ;   s (ω ) = w(ω )r (ω )
If w(t) and s(t) can both be measured independently, the
response function is obtained by deconvolution
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Deconvolution

Formally, we have:

r (ω ) = s (ω ) / w(ω )
This frequency-domain deconvolution is simple, but is vulnerable to
instabilities. For instance, near frequencies where the denominator
is small (or even zero) the result blows up.  A method often used to
stabilize the procedure is to pre-whiten the denominator using a
“water level” approach…basically replacing values smaller than a
threshold by that threshold value.  More sophisticated approaches
involve estimation through regularized inversion.

The response function contains both the effect of wave propagation
through an inhomogeneous structure and wave attenuation. With
additional independent observations (e.g. well log) one can attempt
to separate the two effects.
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Homework

1. Derive the energy balance equation on slide 30

2. Compute the Q operator defined by the inverse Fourier transform:

A(x,t) = 1
2π

eiω te− ik (ω )xdω
−∞

∞

∫
For the case where the dispersion is given by

c(ω ) = c(ω0 ) 1+
1
πQ

ln ω
ω0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

And Q >> 1 (low loss).  Use 1 Hz for the reference frequency, 1 km/s
for the reference phase velocity, Q = 100.  Compute the attenuated
pulses at 10, 100, and 1000 reference wavelengths.  Do not be shy
about the size of the FFT you use (plot the integrand in the
frequency domain to see the range of frequencies you need).


