A global study of transition zone thickness using receiver functions

Jesse F. Lawrence and Peter M. Shearer

Received 1 August 2005; revised 17 February 2006; accepted 28 February 2006; published 16 June 2006.

Systematic stacks of P wave receiver functions (Pds) for 118 global seismic stations yield new transition zone thickness (W\textsubscript{TZ}) estimates, as measured by the difference in depths between the 410- and 660-km mantle discontinuities. The receiver functions are computed from high signal-to-noise records of earthquakes between 1976 and 2002 recorded at distances of 30° to 90°. We obtain a globally averaged transition zone thickness of 242 ± 2 km, in good agreement with SS precursor (SdS) results. Previously noted differences in average W\textsubscript{TZ} between Pds and SdS studies are caused by both geographic bias and the constant ray parameter approximation used in many prior Pds studies, which causes a ~4 km overestimation of W\textsubscript{TZ}. Pds observations suggest lateral variations in W\textsubscript{TZ} of ±20 km with maximal variations of ±35 km and a long-wavelength topography pattern that agrees with SS precursor results showing thick W\textsubscript{TZ} beneath cold subduction zones and thin W\textsubscript{TZ} beneath warmer regions.

1. Introduction

The mantle transition zone (MTZ), bounded by discontinuities at ~410 and ~660 km depths, is thought to play a central role in controlling mantle flow [Yuen et al., 1994]. Mineral physics experiments demonstrate that phase changes from olivine to \(\beta\) phase and \(\gamma\)-spinel to perovskite + magnesiowustite at pressures equivalent to 410 and 660 km likely explain the velocity jumps observed by seismologists [Jackson, 1983; Ringwood, 1975]. Temperature variations will cause thickening and thinning of the transition zone because of the positive and negative Clapeyron slopes for the 410- and 660-km discontinuities respectively [e.g., Katsura and Ito, 1989]. The most prominent technique currently used to seismically observe the 410- and 660-km discontinuities are SS precursor (or SdS) analyses [Shearer, 1991, 1993; Shearer and Masters, 1992; Gossler and Kind, 1996; Lee and Grand, 1996; Flanagan and Shearer, 1998; Gu et al., 1998; Deuss and Woodhouse, 2001, 2002; Gu and Dziewonski, 2002] and P-to-S conversion (or Pds) analyses [Vinnik, 1977; Petersen et al., 1993; Bostock, 1996; Shen et al., 1996; Vinnik et al., 1996; Dueker and Sheehan, 1997; Gurrola and Minster, 1998; Li et al., 1998; Shen et al., 1998; Chevrot et al., 1999; Gilbert et al., 2003].

SS precursors (SdS) are teleseismic shear waves that reflect from the underside of interfaces at depth d, having arrival times determined by the interface depth and the background seismic velocity structure (Figure 1). These precursors are sensitive to large X-shaped Fresnel zones surrounding the foci of the underside SdS reflections [e.g., Shearer et al., 1999]. At distances between 110° and 180° the SdS arrivals may be stacked without interference from other phases, allowing for their analysis despite amplitudes in individual seismograms typically well below the ambient noise. SS precursor studies have good global coverage because of the wide distribution of SS bounce points, and indicate that the global average W\textsubscript{TZ} is 242 ± 2 km with long-wavelength deviations of approximately ±20 km [Flanagan and Shearer, 1998; Gu et al., 1998].

Receiver function analyses yield more detailed measures of interface depths beneath seismic stations by isolating Pds arrivals, which result from teleseismic P waves that convert a portion of their energy into shear waves at interface depth d (Figure 1). Pds studies are sensitive to velocity and interface depth for small regions beneath three-component seismometers [e.g., Langston, 1979; Ammon et al., 1990; Ammon, 1991; Gurrola and Minster, 1998]. Owing to the small scale of Pds sensitivity and the limited geographic distribution of seismometers, Pds is less suited for global-scale analysis than SdS. However, the 82 global Pds times compiled and calculated by Chevrot et al. [1999] indicated an average W\textsubscript{TZ} that is globally ~8 km thicker than results of SdS studies and with poor correlation in observed values among different regions.

Global studies of SdS repeatedly have shown long-wavelength variations of transition zone thickness consistent with thickening beneath subduction zones and parts of continents and thinning beneath oceanic plates and above the African and Pacific megaplumes [Flanagan and Shearer, 1998; Gu et al., 1998; Gu and Dziewonski, 2002]. These studies stack SS precursors regionally by SdS bounce point. The pattern of thick and thin W\textsubscript{TZ} agrees with mineral physics experiments that show opposite Clapeyron slopes at the 410- and 660-km discontinuities [e.g., Katsura and Ito, 1989]. These studies indicate thinner W\textsubscript{TZ} in colder regions (subduction zones) and thicker W\textsubscript{TZ} in warmer regions. The good agreement among different SdS studies [Flanagan...
2. Stacking

With advances in modern computing and data availability, it is possible to evaluate thousands of seismograms in a matter of hours using automated methods. We analyze Pds for all high signal-to-noise global seismic data that fit the following two criteria from a database of over 300,000 long-period waveforms recorded between 1978 and 2002.

1. The event-to-station distance must fall within 30° and 90° to ensure steep incidence angles at the transition zone interfaces. Events closer than 30° are not steep enough to decouple shear and compressional impulses. Records from events farther than 90° become complicated because of vertical and lateral heterogeneity at the CMB. (2) After removing the instrument response, rotating the horizontal components into radial and tangential waveforms, and applying a Parzen band-pass filter between 0.01 and 0.2 Hz, the signal amplitude (the 60 s during and following the P wave onset) must be greater than twice the noise amplitude (the 60 s preceding the P wave onset). These requirements reduce our data set to ~30,000 waveforms.

Before examining the receiver function stacks it is beneficial to first examine radial and vertical P waves. Prior to stacking, each record is normalized and time shifted relative to the maximum amplitude of the P wave. These normalized and time shifted records are stacked into 142 bins according to event-to-station distances between 25 to 96 degrees. The two-dimensional (2-D) P wave stacks are represented as blue (positive) and red (negative) on a color map of time versus distance (Figure 2). A nine-point moving average is applied to smooth the data, further reducing noise and making consistent phases more visible. The data are plotted in time relative to P wave arrival times. Coherent phases, such as PP, PcP, and ScP, are clearly visible on the stacked plots. On the vertical plot, phases such as P660sP, the topside P wave reflection off of the “660,” and P410sP are visible. The radial P wave stack more clearly shows the P660s and P410s reflections. However, the source functions of the stacked P waves interfere with other phases within ±50 s, making direct evaluation of the P410s phase unstable.

We stack receiver functions with the following method: (1) Each receiver function is calculated from the radial and vertical component waveform with spectral deconvolution [Langston, 1979]. Spectral deconvolution is very fast and works well for large quantities of coherent long-period data, so we prefer it over other more advanced and computationally expensive methods [e.g., Gurrola and Minster, 1998; Park and Levin, 2000]. Applying an acausal, low-pass filter and a waterlevel stabilizes the spectral division. (2) Each receiver function is normalized to unity by dividing the series by the maximum amplitude of the initial P wave peak. (3) Receiver functions are discarded if peaks having amplitudes greater than 10% of the maximum amplitude occur prior to the initial P wave peak. While no
phases should arrive prior to the initial P wave peak in the receiver function, unstable deconvolution often results in large amplitudes for this time window. This criterion ensures stability of deconvolution in a fast, automated scheme, necessary for processing thousands of waveforms.

(4) The record is shifted so that the maximum amplitude of the initial P wave peak occurs at relative time zero. This largely removes shallow crustal and upper mantle contamination. (5) The receiver function is added to the 1° bin corresponding to its epicentral distance (with 61 bins spanning from 29.5° to 90.5°). (6) The resulting 61 stacked receiver functions are normalized to have unit amplitude at relative time zero. (7) Each of the stacked receiver functions is converted to depth at a 0.5 km sampling interval by using theoretical 20-s preliminary reference Earth model (PREM) [Dziewonski and Anderson, 1981] P_{ds}-P times calculated in a spherical geometry. (8) These functions are integrated over event-to-station distance to obtain a single stacked depth-converted receiver function. The distance-integrated stack is evenly weighted for all distances because each bin is normalized to unity in step 5.

[11] The globally stacked receiver functions (Figure 3) reduce the dependence on the source function and crustal effects of the P wave, making the $P410s$ and $P660s$ arrivals more clearly visible. These P-to-S conversions match the predicted 20-s PREM traveltimes and move out for each phase (Figure 3a). By using the PREM predicted times, this moveout can be removed, resulting in a depth-corrected receiver function image (Figure 3b). Irregularities in the image of the 410- and 660-km phases result from interference from PP and PcP, as well as possible depth and/or brightness variations in the discontinuities. Integration over distance for each interpolated depth provides a single globally stacked receiver function as a function of depth (Figures 3c and 3d). The peak amplitudes of the depth-corrected P-to-S conversions occur at 406 km and 651.5 km, equating to a transition zone thickness of 246.5 km. However, we will show later this thickness estimate (which assigns all seismograms roughly equal weight) is larger than results obtained for a more spatially uniform global average. Lateral variations in discontinuity depths can be resolved by examining separate results for individual seismic stations. Examples of single-station 2-D and distance-integrated stacks for station CTAO are shown in Figure 4. Results are generally less coherent than the globally averaged results, reflecting the smaller number of stacked traces and the less complete distance coverage. Nevertheless, distinct $P410s$ and $P660s$ phases are apparent for most stations. For each station the depth versus distance receiver function image is stacked to yield individual depths for the 410- and 660-km discontinuities. These 118 individual station stacks are plotted in Figure 5.

3. Transition Zone Thickness

[12] The peaks in the integrated depth-converted receiver functions correspond to the depths of seismic velocity contrasts. In our global-scale analysis, the dominant signals are from the 410- and 660-km discontinuities. To minimize the errors in computed depths imposed by upper mantle and crustal structures, we examine the width of the transition zone ($W_{TZ} = d660 - d410$) rather than the calculated depths of the individual interfaces. Because both the $P410s$ and $P660s$ are nearly identically affected by lateral variations in crustal and upper mantle structure, the differencing of depths yields a more accurate result than the individual depths.

[13] An automated bootstrap resampling method is employed to estimate the error associated with the peak amplitude depths. Twenty integrated depth-converted receiver function stacks are calculated by randomly sampling the data. This yields twenty different transition zone thickness values for each stack. The standard deviation of these twenty transition zone thicknesses yields an estimate of the

Figure 2. A two-dimensional (2-D) amplitude plot (time versus distance) of a P wave stack from 22,781 long-period seismograms for (a) vertical and (b) radial components. The color saturates at −0.15 (red) and 0.15 (blue). Black lines indicate the theoretical arrival times based on 20-s preliminary reference Earth model (PREM) [Dziewonski and Anderson, 1981].
The calculated transition zone thickness is dependent upon the velocity model used to determine the depths. The transition zone thickness is sensitive to velocity heterogeneity within the transition zone [e.g., Ritsema et al., 2004]. Therefore, after stacking with PREM as the reference model [Dziewonski and Anderson, 1981], we apply a correction for each station because of velocity perturbations between 410 and 660 km, as determined by tracing the PREM ray path of P_{660s} and P_{410s} through the S wave model SB10L18 [Masters et al., 2000] along the dominant ray parameter for each stack. While other seismic velocity models have higher resolution, this model was constructed by inverting simultaneously for P and S wave velocity perturbations. While higher resolution P and S wave tomography exists for

Figure 3. A 2-D global receiver function stack for 2841 seismograms plotted as a function of distance and (a) time or (b) computed depth. The color saturates at −0.1 (red) and 0.1 (blue). Black lines indicate the theoretical arrival times based on 20-s PREM [Dziewonski and Anderson, 1981]. The 1-D global stack is plotted as amplitude versus (c) time and (d) depth. The dashed lines in Figures 3c and 3d delineate an increase in amplitude magnification at later times by a factor of 10.
a few regional studies, we prefer to employ a velocity correction associated with a single model. The resulting velocity perturbations are largely less than ±1%, leading to corrections of less than ±2.5 km. We estimate that only very small errors (<1 km) are accumulated as a result of applying the 3-D velocity correction after stacking rather than prior to stacking. Corrections, based on other models, (e.g., S16B30 of Masters et al. [1996]) yield largely similar results even if assumptions regarding $\frac{\partial \ln V_p}{\partial \ln V_S}$ must be made. For brevity, the 118 corrected and uncorrected thicknesses values (W_{TZ}) are tabulated in the auxiliary material.\footnote{Auxiliary material is available at ftp://ftp.agu.org/apend/jb/2005jb003973.}

The global transition zone thickness varies on the order of ±20 km, with maximum perturbations of about ±35 km. The average of the individually calculated velocity-corrected transition zone thicknesses is 246.1 km,

Figure 4. A 2-D receiver function stack for station CTAO plotted as a function of distance and (a) time or (b) computed depth. The color saturates at −0.1 (red) and 0.1 (blue). Black lines indicate the theoretical arrival times based on 20-s PREM. The 1-D CTAO stack is plotted as amplitude versus (c) time and (d) depth. The dashed lines in Figures 3c and 3d delineate an increase in amplitude magnification at later times by a factor of 10.
with a standard deviation of 14.1 km. The distribution of velocity-corrected transition zone thicknesses has a maximum at 242 ± 2 km depending on the bin size and choice of bin center locations. The median velocity-corrected W_{TZ} is 245.4 km. The distribution (quantified with a 5 km bin size and a 5 km step size) is illustrated in Figure 6.

4. Geographic Distribution

[16] The geographic distribution of transition zone thickness anomalies ($d_{TZ} = W_{TZ} - 246$ km) is depicted in Figure 7. Clearly coherent patterns of thick and thin d_{TZ} are visible on the global scale. Anomalously thick W_{TZ} is observed beneath eastern Asia and South America, where subduction is currently active. Thinner W_{TZ} is observed beneath the Pacific, Atlantic and Indian oceans. Applying a spherical Gaussian cap smoothing filter to the data (Figure 8) shows strong agreement with the SS precursor results of Gu et al. [1998] (hereinafter referred to as GDA98) and Flanagan and Shearer [1998] (hereinafter referred to as FS98). The Gaussian filter used here is similar to a scalable window degree-6 spherical harmonic low-pass filter [Simons et al., 1997], which has the advantage of being more stable for unevenly sampled data. The smoothing process averages measurements that are close to each other, but not those that are distant from each other. Consequently, the smooth model is not as biased by uneven geographic sampling. Once filtered, the laterally averaged transition zone thickness is $W_{TZ} = 242 ± 2$ km. This other, but not those that are distant from each other. Consequently, the smooth model is not as biased by uneven geographic sampling. Once filtered, the laterally averaged transition zone thickness is $W_{TZ} = 242 ± 2$ km. This

Figure 5. Distance-converted Pds stack for each of the 118 seismic stations examined in this study. Peak amplitudes are normalized to unity.

Figure 6. Distribution (black line) of Pds results and the best fitting normal distribution (shaded area).

Figure 7. Maps of (a) the raw Pds transition zone thickness anomalies and (b) velocity perturbation–corrected Pds transition zone thickness anomalies relative to 246 km. Plus marks indicate thick transition zone; diamonds indicate thin transition zone, and black circles indicate no perturbation from 246 km.
difference from the station average obtained above ($W_{TZ} = 246$ km) indicates that the geographic limitation in station locations causes oversampling of anomalously thick transition zone. Short-wavelength (tens to hundreds of kilometers) variations in transition zone thickness are observed among nearby stations, which have been observed in many previous studies [e.g., Shen et al., 1998; Gilbert et al., 2003].

The Pds global topography model presented here is less robust than previous SdS models because of more irregular lateral coverage of the Pds results. We illustrate this by demonstrating that the SdS derived W_{TZ} model of FS98 fits both SdS and Pds results better than the Pds model (Table 1). Table 1 shows the RMS misfit for point-by-point comparison between the transition zone thickness measurements of the stacks and the long-wavelength ($f < 6$) transition zone thickness models for this study (hereinafter referred to as LS06) and FS98. Each set of stacks is compared with each long-wavelength model. The RMS misfit between the station Pds results and our smoothed W_{TZ} model is 12.5 km. The RMS misfit only increases by 5% when the Pds results are compared with FS98. By comparison, the RMS misfit between stacked SdS cap thicknesses and the smoothed FS98 model is only 10.6 km. The RMS misfit between observed SdS cap depths of Flanagan and Shearer [1998] increases by 46% when compared to the smoothed Pds model presented here. The smooth FS98 model fits both the Pds and SdS results more reasonably than the Pds smoothed model. Consequently we wish not to focus on the Pds model, but emphasize that the SdS models of Flanagan and Shearer [1998], Gu et al. [1998] and Gu and Dziewonski [2002] can reasonably explain the Pds data.

5. Pds Amplitudes

[18] The distance integrated global stack has $P410s$ and $P660s$ amplitudes that are 7.5% and 10.0% of the radial P wave amplitude, respectively. These amplitudes are remarkably similar to those of plane wave synthetic receiver functions created from IASPEI91 [Kennett and Engdahl, 1991], which provides amplitudes of 7.4% and 9.7% for $P410s$ and $P660s$ respectively assuming a Poisson’s ratio of 0.25. While the $P410s$ pulse has a similar shape to the initial radial P wave pulse, the $P660s$ is asymmetrically broadened by ~ 10 s after the $P660s$ peak. The globally stacked $P520s$ is not detectable, either because of a low-amplitude interference from the $P410s$ and $P660s$, or larger Vp contrast than Vs contrast. Phase stripping methods [e.g., Shearer, 1996] are made difficult because of the difference in shape between the $P410s$ and the $P660s$ phases.

[19] Individual distance integrated stacks for each seismic station have $P410s$ and $P660s$ amplitudes that range from 0% to 12.4% and 4% to 14.7% respectively. We considered Pds values with amplitudes less than 1% to be null results and did not measure W_{TZ} for these stations or include them in Table 1 or Figures 5–9. Observed $P520s$ amplitudes range from 0% to 6%. A positive upswing near $P520s$ was observed in 59% of the stacks where both $P410s$ and $P660s$ were identified. However, only $\sim 40%$ of these potential $P520s$ pulses are stable and have amplitudes above the noise level. P-to-S conversions from shallow interfaces (<250 km) are largely overpowered by crustal reverberations. The $PpSdp$ and $PsPds$ from the Moho cause the large negative pulse at ~ 20 s or ~ 200 km depth (Figures 3 and 4).

6. Discussion

[20] There does not appear to be a discrepancy between these Pds results and previous SdS results. While the

<table>
<thead>
<tr>
<th></th>
<th>LS06 Pds Model</th>
<th>FS98 SdS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS06 Pds stacks</td>
<td>12.5</td>
<td>13.1</td>
</tr>
<tr>
<td>FS98 SdS caps</td>
<td>15.4</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Table 1. RMS Misfit

*aLS06, this study; FS98, Flanagan and Shearer [1998].
Pds measurements oversample thick regions and undersample thin regions because of the preferential locations of seismometers on land. The geographic average of long-wavelength smooth transition zone thickness from this study is 242 km (Figure 8). The low-passed geographic distribution of Pds thicknesses shows similar anomalous W\textsubscript{TZ} locations and amplitudes to that of SdS studies. Geographically sampling the stacked and modeled W\textsubscript{TZ} values of FS98 once at each location of Pds measurements provides a basis for direct comparison (Figure 9). Despite low correlation between stacked SdS and Pds measures of W\textsubscript{TZ} ($R^2 = 0.1$), the mean values ($W_{TZ} = 246.5 \pm 1$ km) are nearly identical. Considering that Pds fluctuations occur on much smaller scales, the low correlation is expected when comparing individual points. The smoothed models correlate much better ($R^2 = 0.5$) while maintaining nearly identical mean values ($W_{TZ} = 245.5 \pm 1$ km). As illustrated above, the long-wavelength SdS model fits the Pds data nearly as well as the long-wavelength Pds model. Therefore the Pds data are consistent with SdS data where data exist. The Pds data preferentially sample thicker transition zone regions because of the predominance of seismometers on continents and the lack of seismometers in the oceans [Gossler and Kind, 1996].

Owing to the uneven global resolution provided by Pds and similarity between these results and those of previous SdS studies we limit our interpretation of anomalous transition zone thickness and refer the reader to previous SdS studies [Flanagan and Shearer, 1998; Gu et al., 1998; Gu and Dziewonski, 2002]. As we have shown here, there is no substantial discrepancy between Pds and SdS results, at least at long wavelengths, so future work may benefit from examining both Pds and SdS results in the same study.

The ~5 km difference between average transition zone thickness values for this study and that of Chevrot et al. [1999], is mainly caused by the difference in stacking and time-to-depth conversion. As mentioned in the methods section, this study converts time to depth by interpolating and time-to-depth conversion. As mentioned in the methods section, this study converts time to depth by interpolating between relative arrival times of Pds-P using a spherical geometry, allowing different ray parameters for Pds and P. Chevrot et al. [1999] employed the plane wave approximation of Kind and Vinnik [1988], which uses the same ray parameter for P and Pds. While the ray parameter varies only slightly between P and Pds, this can cause significant errors in conversion to depth. The plane wave approximation underestimates the theoretical traveltme difference between Pds and P (Figure 10). Stacking with underestimated moveout results in an overestimated relative time of the observed peak amplitude. This overestimated time results in an overestimated transition zone thickness. Chevrot et al. [1999] corrected moveout by referencing the ray parameter to 6.4 s deg-1 (or ~55° event-to-station distance), which causes a consistent 4-km overestimation of W\textsubscript{TZ}.

Our observed short-wavelength variations in measured transition zone thickness among nearby stations may be viewed in two lights; as either error or actual short-wavelength variations. In several respects the two are the same. Short-wavelength variations lead to less stable stacks because of stacking waveforms transmitted through tilted or

Figure 9. (a) Smoothed and (b) binned/stacked transition zone thicknesses of Flanagan and Shearer [1998] compared to those of this study. The Flanagan and Shearer results are sampled once for each of the 118 observed Pds measurements. The correlation of each comparison is given by R^2. The dashed line represents the expected relationship with a slope of unity. The squares represent the average values of each comparison.

average observed velocity-corrected Pds transition zone thicknesses ($W_{TZ} = 246.1$ km) is different from the average SdS transition zone thickness ($W_{TZ} = 242 \pm 2$ km), it agrees better than Chevrot et al. [1999] (251 km). The limited geographic sampling of Pds measurements (particularly beneath oceans) likely causes the gap between our globally stacked transition zone thickness and those of Ss precursor studies.
curved interfaces. In regions where the transition zone topography varies rapidly, the velocity likely also varies rapidly, resulting in erroneous time to transition zone thickness conversions. As Li et al. [2003] have shown, the general patterns of thick and thin transition zone agree between \(SdS \) and \(PdS \) results, but the short-wavelength amplitudes of transition zone thickness variation are greater for \(PdS \) (especially near mantle plumes). Consequently they argue that \(SS \) precursor data fail to observe the short-wavelength topography for plumes, and that \(PdS \) time variations likely require shorter-wavelength velocity corrections than are provided by current global seismic velocity models. The large circular areas used to stack sufficient \(SS \) data for stable stacks likely smoothes over topography, resulting in lower amplitudes. Nevertheless, the experimentally determined Clapeyron slopes of both discontinuities agree much better with \(SdS \) data than with \(PdS \) data [Bina and Helffrich, 1994; Li et al., 2003], suggesting that the \(SdS \) data may be more robust.

The estimated transition zone thickness depends on the reference velocity model used in the calculation. Changing the velocity model from PREM [Dziewonski and Anderson, 1981] to IASPEI91 [Kennett and Engdahl, 1991] causes \(\pm 1 \) km variation. Additional error may be incorporated in calculating transition zone thickness without accounting for 3-D velocity heterogeneity. A 2.5% positive velocity anomaly in the transition zone may result in a 6 km underestimation of transition zone thickness. However, accounting for velocity perturbations using the shear velocity models, SB10L18 [Masters et al., 2000], S16B30 [Masters et al., 1996] or SB4L18 [Masters et al., 2000], does not significantly change the global pattern of \(PdS \) transition zone thicknesses. In general, one might expect thicker transition zones to result from colder temperatures and higher seismic velocities in the transition zone, and conversely for thinner transition zones to be associated with slower velocities. Such a correlation has been observed weakly for the global \(SdS \) studies [e.g., Flanagan and Shearer, 1998] and more strongly for particular regions by Lebedev et al. [2002, 2003]. For such correlated anomalies, the velocity heterogeneity correction largely makes thick transition zones thicker and thin transition zones thinner. The globally averaged net velocity corrections change the average transition zone thickness by less than 0.5 km.

7. Conclusion

We stack receiver functions from global seismic stations to measure average transition zone thickness as well as the regional variations in transition zone thickness. The station-averaged observed transition zone thickness is 246 km but a more spatially uniform average yields 242 km, in good agreement with \(SS \) precursor studies. The long-wavelength global pattern and amplitude of transition zone

Figure 10. The plane wave approximation underestimates the (a) theoretical time delay between \(PdS \) and \(P \), resulting in an over estimation of the (b) time delay anomaly and (c) transition zone thickness anomaly. The reference slowness used by Chevrot et al. [1999] corresponds to the depth error marked by the dashed line (4 km).
thickness variations are similar to those found by global SdS studies, indicating that no significant discrepancy exists between the Pds and SdS constraints on transition zone structure.

Acknowledgments. This study was conducted with help and subroutines from Guy Masters and data from the Data Management Center of the Incorporated Research Institutions for Seismology. We thank Justin Revenaugh, Yiu Jeffrey Gu, and an anonymous reviewer for their suggestions and comments. This research was supported by National Science Foundation grant EAR02-29323.

References

J. F. Lawrence and P. M. Shearer, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92039-0225, USA. (jlawrence@ucsd.edu)