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Estimating Local Vp/Vs Ratios within Similar Earthquake Clusters

by Guoqing Lin and Peter Shearer

Abstract We develop and test a method to estimate local Vp /Vs ratios for com-
pact similar earthquake clusters using the precise P and S differential times obtained
using waveform cross-correlation. We demonstrate how our technique works using
synthetic data and evaluate likely errors arising from near-source takeoff angle
differences between P and S waves. We use a robust misfit function method to
compute Vp /Vs ratios for both synthetic data sets and several similar event clusters
in southern California, and use a bootstrap resampling approach to estimate stan-
dard errors for real data. Our technique has higher resolution for near-source
Vp /Vs ratios than typical tomographic inversion methods and provides constraints on
near-fault rock properties.

Introduction

Recently, waveform cross-correlation has become an in-
creasingly important tool for improving relative earthquake
locations, characterizing event similarity and studying earth-
quake source properties (e.g., Nakamura, 1978; Poupinet et
al., 1984; Got et al., 1994; Dodge et al., 1995; Nadeau et
al., 1995; Gillard et al., 1996; Shearer, 1997, 1998; Rubin
et al., 1999; Waldhauser et al., 1999; Astiz et al., 2000; Astiz
and Shearer, 2000; Shearer, 2002; Shearer et al., 2003;
Hauksson and Shearer, 2005; Schaff and Waldhauser, 2005;
Shearer et al., 2005). Relative earthquake locations have been
remarkably improved by using the very precise differential
travel times obtained from waveform cross-correlation, which
can often be measured to millisecond precision for similar
events, allowing relative earthquake location to be precise
to a few meters. In most of these studies, the relative loca-
tions are obtained by using a fixed seismic velocity model,
although recently the differential times have also been used
to constrain tomographic inversions (Zhang and Thurber,
2003).

Here we show that when both P- and S-wave differential
times are available, it is possible to estimate the local P-to-S
velocity ratio within individual similar event clusters in ad-
dition to improving the relative locations among the events.
Phillips et al. (1992) presented a similar technique for micro-
earthquake cluster structure studies but have not yet pub-
lished the details of their method. We demonstrate that in
many cases reasonable Vp/Vs estimates can be obtained even
given uncertainties in the P- and S-takeoff angles. Finally,
we use a robust fitting method to handle the outliers that are
often present in real data and apply bootstrap resampling to
evaluate likely errors. We test our approach on both syn-
thetic data and waveform cross-correlation data for similar
event clusters in southern California.

Theory

We begin by considering an idealized example of a sin-
gle pair of events and then systematically add the complex-
ities associated with more realistic geometries.

Obtaining the Vp/Vs Ratio for a Single Pair of Events

Consider a pair of nearby events, event 1 and event 2,
recorded at n stations. If the event separation is small enough
compared with the source–receiver distances, the differential
P-wave travel time between these two events at stationidTp

i can be expressed as:
idlpi i idT ! T " T ! (1)p p p2 1 Vp

where and are the source–receiver travel times fori iT Tp p2 1

events 2 and 1, respectively, is the difference in the ray-idlp
path distances between the two events, and Vp is the local
P-wave velocity (see Fig. 1). Note that because of source–
receiver reciprocity this travel-time difference is identical
with that resulting from a source at the station generating a
wavefront that is recorded at the two event locations. We
assume that the events are sufficiently close together that the
seismic velocity is locally constant and that the P-reciprocal
wavefront from each station may be approximated as planar.
Because the stations are in different directions, the valuesidlp
will vary among the stations.

Under similar assumptions, the differential S travel time
may be expressed as

idlsi i idT ! T " T ! . (2)s s s2 1 Vs

Provided that the P- and S-ray paths are coincident (we will
discuss this assumption in greater detail in a later section),
then andi idl ! dlp s
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Figure 1. The ray geometry for a pair of events
recorded by a distant station.

Figure 2. The filled circles show the differential
P and S travel times and the open circles indicate the
differential P and S arrival times, which are shifted
dt0 in both coordinates from the P and S travel-time
line. The slopes of both lines are the local Vp/Vs ratio.
The travel-time line passes through the origin (0, 0),
and the arrival-time line has a y intercept of dt0(1 "
Vp/Vs).

iV dTp s! (3)iV dTs p

and we could estimate the local Vp/Vs ratio near the events
separately from the and times. Given a number ofi idT dTs p

different stations, the points (i ! 1, 2, 3, . . . , n)i i(dT , dT )p s

should all lie on the dTs ! (Vp/Vs)dTp line.
However, we do not normally measure the travel times,

T, because we do not know the event origin times. Instead,
we measure the arrival times, t. Let dt0 be the difference in
origin times between these two events, that is,

dt ! t " t (4)0 0 02 1

where is the origin time of event 2 and is the origint t0 02 1

time of event 1. Then for station i, i i it ! t # T , t !p 0 p p1 1 1 2

, andit # T0 p2 2

i i i it " t ! (t # T ) " (t # T ) (5)p p 0 p 0 p2 1 2 2 1 1

i i! (t " t ) # (T " T ) (6)0 0 p p2 1 2 1

and we have or . Simi-i i i idt ! dt # dT dT ! dt " dtp 0 p p p 0

larly for the S waves we have , and thusi idT ! dt " dts s 0

iV dt " dtp s 0! (7)iV dt " dts p 0

The effect of the difference in origin times, dt0, is to shift
the points in both coordinates by dt0 or along ai i(dT , dT )p s

45! line. Figure 2 shows the relation between andi i(dt , dt )p s

.i i(dT , dT )p s

Equation (7) can be rewritten in the slope–
intercept form

V Vp pi idt ! dt # dt 1 " (8)s p 0! " ! "V Vs s

and we see that the points are on a line with slopei i(dt , dt )p s

Vp/Vs and y intercept dt0(1 " Vp/Vs) (shown in Fig. 2). No-
tice that the dt0(1 " Vp/Vs) term does not contain additional
constraints on the Vp/Vs ratio because dt0 is not known a
priori. Thus, the (dtp, dts) points for a single pair of events
recorded by many stations should form a line with a slope
that provides the Vp/Vs ratio and a y intercept that gives the
differential origin time. If noise or picking errors are present,
then some kind of fitting procedure will be necessary to de-
termine the best-fitting slope and estimate the Vp/Vs ratio.
Note that this method can only be used to solve for local
Vp/Vs ratios, not the absolute P- or S-wave velocity, unless

or is independently known (e.g., Fitch, 1975). In gen-i idl dlp s

eral, these event separation distances and the overall size of
an event cluster trade off with the local P or S velocity.

However, in principle the Vp/Vs ratio can be recovered even
without accurate event locations as we demonstrate here.

Next, we use synthetic data to illustrate the technique.
We perform our synthetic tests in a 64 $ 64 $ 32 km
uniform half-space with a P-wave velocity of 6 km/sec and
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Figure 3. P differential arrival times versus S dif-
ferential arrival times for a single pair of events re-
corded by 20 random stations on the surface. The
straight line passing through the points is the best-
fitting line from our iterative total least-squares
method. The slope of the line is 1.732, which is the
true Vp/Vs ratio in our test.

a Vp/Vs ratio of 1.732. We generate a single pair of events
separated by 0.2 km with their center at 10 km depth and 20
random station locations on the surface of the half-space.
We compute the differential times from this event pair to all
20 stations and use these differential times to estimate the
local Vp/Vs ratio. For simplicity, we do not add any noise
for this example. Figure 3 shows the synthetic differential
times, which, as expected define a line of slope 1.732.

Vp/Vs Ratio for a Cluster of Events

For a single pair of events, equation (8) works directly
because the y intercept, dt0(1 " Vp/Vs), is a constant for all
the records. But for different pairs of events, it is not appro-
priate to use equation (8) because the differential origin
times are not the same. In other words, for all pairs of events
in a compact cluster, assuming they all have the same local
Vp/Vs ratios, if we plot all the (dtp, dts) points on one single
plot, they will lie on different straight lines parallel to each
other at slope Vp/Vs, but with different y intercepts.

This is illustrated in another synthetic example. In this
case, we continue using a uniform half-space model with a
P-wave velocity of 6 km/sec and a Vp/Vs ratio of 1.732. We
generate 20 random station locations on the surface of the
half-space and 27 events with random origin times in a com-
pact 0.2 $ 0.2 $ 0.2 km cube with the center at 10 km
depth. Figure 4 shows the event and station distributions for
this test. We compute all possible differential times from

each pair of events to the 20 stations (at this stage we still do
not include any noise). Figure 5a shows the (dtp, dts) points
for different pairs of events. For plotting purposes, we only
plot the points with absolute values less than 0.05 sec. These
points are on different lines parallel to each other at the slopes
of the true Vp/Vs ratio (1.732) for the cube, but different y
intercepts, which are due to the differing differential origin
times between event pairs.

To estimate the local Vp/Vs ratio for the compact cube
using the differential times from all available event pairs, we
can use equation (8) to write a series of equations for each
station that records the pair of events 1 and 2:

V Vp p1 1dt ! dt # dt 1 " for station 1 (9)s p 0! " ! "V Vs s

V Vp p2 2dt ! dt # dt 1 " for station 2 (10)s p 0! " ! "V Vs s

M

V Vp pn ndt ! dt # dt 1 " for station n (11)s p 0! " ! "V Vs s

If we sum these equations and divide by the number of sta-
tions n, we then have

V Vp pdt ! dt # dt 1 " (12)s p 0! " ! "V Vs s

where and are the mean values of the differentialdt dts p

S and P times from all the stations. Subtracting (12) from
(8), we obtain

Vpi i(dt " dt ) ! (dt " dt ) (13)s s p p! "Vs

Vpi iˆ ˆdt ! dt (14)s p! "Vs

Figure 4. Event and station distributions for the
27 synthetic events in a cube and 20 stations on the
surface. The small dot in the middle of the half-space
is the cube of events, which is hard to distinguish
because the size of the cube is 0.2 $ 0.2 $ 0.2 km.
The triangles are the stations.
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where and are the demeaned differential S- andi iˆ ˆdt dts p

P-arrival times. In this way we can estimate the Vp/Vs ratio
using the and vectors from all event pairs in the com-ˆ ˆdt dtp s

pact cluster. Because equation (14) is not a function of dif-
ferential origin times, if we assume all pairs of events are in
a compact cluster, all the points in the cluster shouldˆ ˆ(dt , dt )p s

align on a straight line at slope Vp/Vs and through the origin
(0, 0), as shown in Figure 5b. This makes it possible to fit
all of the points simultaneously for the best-fitting
Vp/Vs ratio for the entire cluster.

Fitting Method for Noisy Data

In the preceding synthetic examples we have not in-
cluded any noise, so the data points directly define the line
that gives the Vp/Vs ratio. However, real data will have some
degree of error, which will require the use of a fitting method
to compute the best-fitting line. In addition, our differential
time data often have obvious outliers—extreme values that
would severely bias any conventional least-squares ap-
proach. We thus apply a more robust method, which mea-
sures distance using the L2 norm for data misfits below some
specified value, dmax (which in general will depend on the
observations), and an L1 norm for larger values. This hybrid
l1 " l2 error measure was proposed by Huber (1973) and
can be used to compute what we will term the robust mean
of a distribution. For data with outliers, we use the robust
mean to demean the differential S- and P-arrival times for
each station as described previously.

In the classical least-squares (LS) line-fitting approach,
one of the two measurements is assumed to be exact and
free of error and a regression is performed to find the best-
fitting line to the second measurement. For example, if the
the data are given as (x,y) pairs and the error is assumed to
be entirely in y, then we find the slope and y intercept that
minimize the sum of the squares of the vertical (y) distances
between the line and the data. In our case, however, we likely
have errors in both the and values. If the x and y errorsi idt dts p

are assumed equal, then the optimal solution is given by the
line with the minimum perpendicular distance to each point.

Figure 5. (a) P differential arrival times dtp versus
S differential arrival times dts for different pairs of
events in a compact cluster. These points are on dif-
ferent lines parallel to each other, with the same slope
as the true Vp/Vs ratio for the cluster, but with different
y intercepts, which are due to the varying differential
origin times. (b) Demeaned dtp versus demeaned dts
in (a). These points align on a straight line at slope
Vp/Vs and through the origin (0, 0). (c) Demeaned dtp
versus dts for 27 synthetic events using the uniform
half-space velocity model. We add Gaussian distrib-
uted picking errors in both P and S differential times
and also uniform distributed errors in P times to sim-
ulate the outliers in real data. The slope of the best-
fitting straight line is 1.730, which is very close to the
true Vp/Vs ratio for the cube.
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P- and S-takeoff angles are different. This might be caused
by depth-varying Vp/Vs differences or by local Vp/Vs varia-
tions near the source pair.

First, let us consider the effect that ray-path deviations
will have on our dtp and dts measurements. The ray-angle
geometry at the event pair is shown in Figure 6. Let âp be
the P-ray unit direction vector, âs be the S-ray unit direction
vector, 2e be the angle between âp and âs, and ê be the unit
direction vector from event 1 to event 2. Without loss of
generality we may assume that âp and âs are in the x-z plane
and symmetric about the z axis. We can then write

â ! ("sin e, 0, cos e) (15a)p

â ! (sin e, 0, cos e) (15b)s

ê ! (sin h cos !, sin h sin !, cos h) (15c)

where the event vector ê has an arbitrary orientation defined
by the polar angle h and the azimuthal angle !. Let bp be
the angle between âp and ê, and bs be the angle between âs

and ê. We then have

cos b ! â • ê ! "sin e sin h cos !p p

# cos e cos h (16a)

cos b ! â • ê ! sin e sin h cos !s s

# cos e cos h (16b)

Least-squares solutions to this problem are described in, for
example, Jefferys (1981), Press et al. (1992), and Van Huffel
(1997). In the case of unequal x and y errors, the problem
can be rescaled to be equivalent to the equal error case. To
account for outliers in our differential time measurements,
we modify this method to be more robust. We perform a
grid search for lines of different slopes, computing the best-
fitting y intercept for each line from the robust mean of the
perpendicular distances to each data point, after first scaling
the values so that their expected variance matches that ofidts
the values.idtp

As we will discuss subsequently, biases resulting from
angular differences in the local P- and S-ray paths near the
events will cause errors in the dts points to be R times greater
than the errors in the dtp points, where R is the Vp/Vs ratio.
We thus multiply the data dts values by 1/R so that their
expected error is similar in size to the dtp error. Note, how-
ever, that any desired rescaling could be applied at this point
if the relative variance of dtp and dts measurements is known
a priori. Because our method is solving for R, an iterative
method is necessary. We assume a starting value for R, find
the best-fitting line, and then replace R with its updated value
(R ! R $ slope) for the next iteration. This iterative algo-
rithm converges after several (3 to 5) iterations, and the final
R value is our estimate for the Vp/Vs ratio. For our synthetic
tests with noise, we use 1.0 as an initial value for R to test
the robustness of our method; but for real data, 1.732 would
be a more reasonable starting value for the Vp/Vs ratio, and
is used in our analysis of waveform cross-correlation results.

To test our fitting method, we generate a synthetic data
set for the 27 events in a cube and 20 stations on the surface
using the same uniform half-space velocity model in the pre-
vious example. We add Gaussian distributed noise with zero
mean and a standard deviation of 5 msec, which is compa-
rable to the size of the scatter in real cross-correlation data,
for the P differential times and scaled by 1.732 (the true
Vp/Vs ratio) for the S differential times. To simulate the out-
liers in real data, we also add uniform distributed noise in
1% of the P differential times. To show that our iterative
method works correctly even if the initial R estimate is in-
correct, we assume R ! 1 in the first iteration. We test dif-
ferent initial values for R (between 0.1 and 10) in our study
and find they all converge to the same Vp/Vs ratio for this
synthetic example. Figure 5c shows the resulting data points
and our Vp/Vs ratio estimate of 1.730. If we used the classical
least-squares approach rather than our robust method, the
estimated Vp/Vs ratio is 1.583. If the errors in the dtp and dts
points are assumed to be equal, then the robust total least-
squares result is biased and we obtain a Vp/Vs ratio of 1.784
for this example.

Effect of Different Takeoff Angles for P and S

So far we have been assuming that the P and S waves
are coincident so that they have the same takeoff angles.
Now we consider the possible errors that may result if the

Figure 6. The spherical coordinate system that we
use to show the bias in dtp and dts due to ray-path
deviations.
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Figure 7. The velocity model that we use to test
the effect of different P- and S-wave takeoff angles.

We can express the differential P and S travel times as

dt ! (â • e) /V ! (%e % â • ê) /Vp p p p p (17a)
! (%e % cos b ) /Vp p

dt ! (â • e) /V ! (%e % â • ê) /Vs s s s s (17b)
! (%e % cos b ) /Vs s

where is the distance between event 1 and event 2 (i.e.,%e &
. Thus, each (dtp, dts) point can be written ase ! %e & ê

cos b cos bp s(dt , dt ) ! %e % ,p s ! "V Vp s

cos e cos h sin e sin h cos !
! %e % " ,! V Vp p

cos e cos h sin e sin h cos !
# (18)"V Vs s

When the P- and S-ray paths are coincident (i.e., e ! 0),
then the slope of the (dtp, dts) points is equal to Vp/Vs ratio.
When e is small but nonzero, then cos e " 1, so that dtp and
dts are biased from their e ! 0 values by (sin e sin h cos !)/
Vp and (sin e sin h cos !)/Vs, respectively. Thus, we see that
the bias introduced into the dts differential times by ray-path
deviations will be a factor Vp/Vs times larger than the bias
in the dtp times.

To show the effect of different P- and S-wave takeoff
angles, we generate a velocity model in which both Vp and
Vs increase, but the Vp/Vs ratio decreases with depth (see
Fig. 7). At 10 km source depth and 30 km epicentral dis-
tance, the P-takeoff angle at the source is 80.13! (from ver-
tical) and the S-takeoff angle is 85.03!. We use the depth-
varying velocity model to generate differential times for a
single pair of events separated by 0.2 km at 10 km depth
with the event separation vector perpendicular to the surface,
and recorded by 20 random stations at the surface. The epi-
central distances range between 5 km and 38 km, most of
which are about 30 km. In Figure 8, we plot (dtp, dts) points
for this pair of events. For the purpose of this test, we do
not add any random noise to the differential times. The true
local Vp/Vs ratio at the center of the events is 1.697, whereas
the estimated slope is 1.830. The points are biased from the
true straight line because the takeoff angles for P and S from
each station are different.

The bias in the estimated Vp/Vs ratio will vary depend-
ing on the orientation of the event pair with respect to the
incoming rays. To illustrate this, we use the same depth-
varying velocity model and station distribution, but rotate
the relative location vector of the pair of events every
5! uniformly in three dimensions while keeping the center
of the events fixed. In this way, the P- and S-takeoff angles
from each station to the pair of events change in all possible

directions. We then use the (dtp, dts) points from all these
rotated pairs of events to estimate the slope.

Figure 9 shows all these points from the rotated event
pairs and the best-fitting straight line. The slope of the best-
fitting line is 1.697, which is the true Vp/Vs ratio at the center
of the events. Thus, although P- versus S-takeoff angle dif-
ferences will bias results for individual event pairs, this bias
will tend to average out when a large number of random
event orientations are present. This can be seen from sym-
metry considerations in Figure 6 and equation (18); for every
ê1 vector with a positive Vp/Vs bias, there will also exist a
corresponding ê2 vector with negative bias at !2 ! !1 # p.

For real data it is not possible to do the three-dimensional
rotations. However, if an event cluster is small and contains
event pairs of varying orientations and the station distribution
is good enough, the ray paths for all the events in the cluster
may form a random distribution of directions, as in the three-
dimensional rotations, so that the local Vp/Vs ratio may be
accurately recorded. To show this, we generate the synthetic
differential times for the 27 events in the cube and 20 stations
in the previous section using the same depth-varying velocity
model. The Vp/Vs ratio at the center of the cube is 1.697. The
event and station distributions are shown in Figure 4. The
(dtp, dts) points for this small cube are shown in Figure 10.
The slope of the best-fitting straight line is 1.697, which is
the true Vp/Vs ratio at the center of the cube.
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Figure 8. dtp versus dts for a single pair of events
recorded by 20 stations at the surface using the depth-
varying velocity model of Figure 7. The estimated
slope is 1.830, shown by the solid line, while the true
local Vp/Vs ratio is 1.697, shown by the dashed line.

Figure 9. dtp versus dts for the same station dis-
tribution and velocity model used in Figure 8. In this
case, we rotate the pair of events every 5! uniformly
in three dimensions so that the ray paths from the
stations change in all possible directions. For plotting
purposes, we only plot a random 5% of the points.
The estimated slope is 1.697, which is the true Vp/Vs
ratio at the cluster depth.

Figure 10. dtp versus dts for 27 synthetic events
using the velocity model shown in Figure 7. The slope
of the best-fitting straight line is 1.697, which is the
true Vp/Vs ratio for the cube.

However, it should be recognized that the bias may not
be completely removed in the case of event clusters with a
more limited distribution of events. For example, if the 27
events in this synthetic example are restricted to a horizontal
plane, then the Vp/Vs ratio estimate is 1.716. If the events
are located within a vertical plane, then the computed Vp/Vs

ratio will vary between 1.677 and 1.689, depending on the
azimuth of the plane. This suggests that the most accurate
results for real data clusters will be obtained for clusters with
a three-dimensional distribution of events.

As a final test of our Vp/Vs ratio estimate approach, we
generate a synthetic data set for the 27 events in a cube and
20 stations on the surface using the same depth-varying ve-
locity model in the previous example. We add Gaussian dis-
tributed noise with zero mean and standard deviations of
5 msec for the P differential times and scaled by 1.697 (the
true Vp/Vs ratio) for the S differential times. To simulate
the outliers in real data, we also add uniform distributed
noise in 5% of the P differential times. Our Vp/Vs ratio es-
timate for this cube is 1.692 (shown in Fig. 11), very close
to the true value of 1.697. Note that the outliers in our test
are very strong, which would significantly bias the ratio es-
timate if we used simple least squares rather than our robust
approach. The Vp/Vs ratio estimate from simple least squares
is 1.243 for this example. If the errors in the dtp and dts points
are assumed to be equal, then the robust total least-squares
result is biased and we obtain a Vp/Vs ratio of 1.752.
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Figure 11. dtp versus dts for 27 synthetic events
using the velocity model shown in Figure 7. We add
Gaussian distributed picking errors in both P and S
differential times and also uniform distributed errors
in P times to simulate the outliers in real data. The
slope of the best-fitting straight line is 1.692, which
is very close to the true Vp/Vs ratio for the cube.

Figure 12. Demeaned dtp versus dts for the 74
events in cluster 99 from the SHLK catalog (Shearer
et al., 2005). The slope of the best-fitting straight line
is 1.782 ' 0.006.

Examples for Southern California
Earthquake Clusters

We apply this Vp/Vs ratio estimate method to differential
times from waveform cross-correlation for two similar event
clusters in southern California taken from Shearer et al.
(2005). To estimate the Vp/Vs ratio for each event cluster
accurately, we use event pairs with at least five differential
P-S times and require more than 100 differential P-S time
pairs for the entire cluster.

Estimating Standard Errors

For real data, the event and station distributions may not
be as good as in our synthetic data, so it is desirable to
estimate standard errors in our Vp/Vs ratios. Since the true
values are unknown, certain assumptions are necessary to
obtain error estimates. The classical least-squares method
can be used to compute error ellipses based upon v2 misfit
criteria and is optimal for the case of uncorrelated Gaussian
random errors. These methods are not easily generalized to
other model norms, such as the robust least-squares method
that is used here. As an alternative, we have applied a boot-
strap approach (Efron and Gong, 1983; Efron and Tibshirani,
1991), in which each pair of suitable differential P and S times
in the same cluster may be sampled multiple times or not
sampled at all. This process is repeated for 100 subsamples
for each cluster and we estimate the standard deviation of
these 100 subsamples as the standard error of the Vp/Vs ratio.
However, note that these formal statistical uncertainties
(which can be quite small when the number of data points
is large) represent a minimum error because they do not
include the possible biases resulting from P- and S-takeoff
angle differences in nonisotropic event distributions.

Vp/Vs Ratio Estimates Using Waveform
Cross-Correlation Results

Here we present two examples of Vp/Vs ratio estimates
using the waveform cross-correlation results for clusters in
southern California taken from Shearer et al. (2005). Figure
12 shows the 7265 demeaned (dtp, dts) points for cluster 99
(in the POLY5 subset of events) in southern California from
Shearer et al. (2005). The centroid of this cluster is at
(33.511! N, "116.555! E, 10.1 km). The slope of the best-
fitting straight line is 1.782 and the standard deviation of our
Vp/Vs ratio estimate from bootstrap resampling is 0.006. Fig-
ure 13 shows the 5520 demeaned (dtp, dts) points for cluster
427 in POLY5. The centroid of this cluster is at (33.478! N,
"116.495! E, 10.5 km). The resolved Vp/Vs ratio for this
cluster is 1.713 and the standard deviation from bootstrap
resampling is 0.010. In principle, these observed Vp/Vs ratios
could be used to constrain the lithology of the rock in the
source regions. As noted by Tatham (1982), laboratory and
well-log data suggest a Vp/Vs ratio near 1.8 for dolomite and
in the range of 1.6 to 1.75 for sandstones. However, the
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Figure 13. Demeaned dtp versus dts for the 81
events in cluster 427 from the SHLK catalog (Shearer
et al., 2005). The slope of the best-fitting straight line
is 1.713 ' 0.010.

presence of cracks and the degree of pore fluid saturation
can also be important factors in determining the Vp/Vs ratio.

Discussion

In general, variations in Vp/Vs ratios may be determined
by using tomographic methods. However, the resolution of
local Vp/Vs ratios from tomography is usually limited due to
the coarse grid sizes, although Zhang and Thurber (2005)
showed that the adaptive mesh tomography scheme has the
ability to resolve the velocity structure near the source re-
gion. In this study, we develop a method to estimate local
Vp/Vs ratios for event clusters by using precise differential
times derived from the waveform cross-correlation tech-
nique. Our method is simple to execute and does not require
much computer power. The uncertainty is typically small
since the precision of differential times from waveform
cross-correlation can be as small as a millisecond and the
Vp/Vs ratio can be recovered even without accurate event
locations.

For real data, the l1 " l2 misfit measure is useful to
reduce the effects of outliers. Due to possible differences in
P- and S-wave takeoff angles, the estimated Vp/Vs ratios
could be biased from their true values. However, as shown
in our synthetic data tests, if the seismic ray coverage for a
cluster of events is good enough, the true Vp/Vs ratio can
still be recovered. We find that the resolved Vp/Vs ratios are
very sensitive to the differential times, especially at short
hypocentral distances where the P and S arrivals are very
close to each other. In this case, the S waveforms should be
windowed very carefully, because otherwise the Vp/Vs ratios

will likely be underestimated because part of the P wave
train may be included in the S-wave cross-correlation.

In this study, we assume that the scale length of changes
in Vp/Vs ratios is greater than the size of the similar event
clusters. Our method could be biased if there are significant
variations in the Vp/Vs ratio within the cluster, although
given a good distribution of events we should still obtain a
reasonable value for the average Vp/Vs ratio. It is possible
that spatial and/or temporal variations in Vp/Vs ratios could
be identified by analyzing subsets of similar event clusters,
but we do not attempt this here. Given recent applications
of waveform cross-correlation to large earthquake catalogs
(e.g., Hauksson and Shearer, 2005; Schaff and Waldhauser,
2005), widespread computation of near-source Vp/Vs ratios
appears practical and should provide a useful complement
to tomographic methods. In addition, these local Vp/Vs mea-
surements should permit computing more accurate relative
locations of events within each similar event cluster. We will
defer discussing details of how this can be done to a later
study.
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