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OBSERVING AND MODELING ELASTIC
SCATTERING IN THE DEEP EARTH

PETER M. SHEARER AND PAUL S. EARLE

ABSTRACT

Seismic scattering in the deep Earth below the mantle transition zone is observed from precursors and
codas to a number of body-wave arrivals, including P, Pgy, PKP, PKiKP, PKKP, and P'P'.
Envelope-stacking methods applied to large teleseismic databases are useful for resolving the
globally averaged time and amplitude dependence of these arrivals. Stacks of P coda near 1 Hz
from shallow earthquakes exhibit significant variations among different source and receiver locations,
indicating lateral variations in scattering strength. At least some deep-mantle, core-mantle boundary,
and inner-core scattering is indicated by the observations, but the strength and scale length of the
random velocity heterogeneity required to explain the data are not yet firmly established. Monte Carlo
seismic “particle” algorithms, based on numerical evaluation of radiative transfer theory with Born
scattering amplitudes for random elastic heterogeneity, provide a powerful tool for computer model-
ing of scattering in the whole Earth because they preserve energy and can handle multiple scattering
through depth-varying heterogeneity models. Efficient implementation of these algorithms can be
achieved by precomputing ray tracing tables and discretized scattering probability functions.

KEY WorDps:  Seismic scattering, coda waves, Monte Carlo algorithms, deep Earth
heterogeneity © 2008 Elsevier Inc.

1. INTRODUCTION

Observing and modeling seismic scattering in the mantle and core is important
because of the constraints these studies provide on small-scale heterogeneity. However,
investigating seismic scattering in the deep Earth is challenging because strong litho-
spheric scattering can mask scattered arrivals from deeper in the mantle. By correctly
identifying the scattering origin of PKP precursors, Cleary and Haddon (1972) found the
first definitive evidence for deep-Earth scattering. PKP precursors have an unusual ray
geometry that provides a unique window into scattering within the lowermost mantle and
at the core-mantle boundary (CMB). Early modeling of PKP precursors focused on the
(CMB) region as their likely source and used single-scattering theory applied to random
media models to provide a first-order fit to precursor amplitudes (e.g., Haddon and
Cleary, 1974; Doornbos, 1978; Bataille and Flatté, 1988). However, more recent work
(Hedlin et al., 1997; Cormier, 1999; Margerin and Nolet, 2003a,b) showed that the
scattering must extend at least 600 km into the mantle above the core, and it seems
likely that some amount of scattering is present throughout the mantle.

In addition to PKP precursors, there are a number of other seismic observations that
suggest deep scattering, including P4 coda (Bataille et al., 1990; Tono and Yomogida,
1996; Bataille and Lund, 1996; Earle and Shearer, 2001). PKKP precursors (Chang and
Cleary, 1978, 1981; Doornbos, 1980; Earle and Shearer, 1997), and PKiKP coda (Vidale
and Earle, 2000; Vidale et al., 2000; Poupinet and Kennett, 2004; Koper et al., 2004). In
principle, the coda of deep-turning P and S waves is sensitive to lower-mantle scattering,
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but it is tricky to separate this scattering from the much stronger scattering that occurs in
the shallow mantle and crust. Nonetheless, several recent studies have found evidence in
these phases for a deep-scattering contribution (Cormier, 2000; Lee et al., 2003; Shearer
and Earle, 2004).

All of these results are valuable because they provide estimates on the strength of
heterogeneity in the deep mantle and inner core at scale lengths (e.g., ~10 km) much
smaller than those that can be imaged using tomographic methods. These velocity
anomalies are almost certainly compositional in origin because small-scale thermal
perturbations would quickly diffuse away, and thus they provide insight regarding the
degree of mixing in mantle convection models. It is therefore important to further
develop seismic observations to resolve additional details regarding the heterogeneity,
including its strength, scale length, and depth dependence.

Accurate modeling of the seismic observations requires a more complete theory than
methods based on the Born approximation, which do not conserve energy and ignore the
effects of multiple scattering. For example, Margerin and Nolet (2003a,b) found that
Born theory is accurate for whole-mantle scattering models only when the deep-velocity
heterogeneity is less than 0.5%. Finite difference/element methods can handle velocity
models of arbitrary complexity but are not yet numerically feasible for global scattering
problems at high frequencies (1 Hz). Faster algorithms are possible through use of the
parabolic and Markov approximations (e.g., Sato and Fehler, 2006), but three-
dimensional global calculations remain difficult. Here, we focus on Monte Carlo meth-
ods based on radiative transfer theory that simulate the random walk of millions of
seismic energy “particles.” Although these methods discard phase information, they are a
powerful and practical approach to modeling whole-Earth, high-frequency scattering.

We begin by describing the processing and stacking methods that are suited for global
seismic observations and then present some specifics regarding how the Monte Carlo
method can be efficiently implemented. Results from the Shearer and Earle (2004)
analysis of P coda will be highlighted, but we describe our algorithms in more detail
and present some new results concerning lateral variability in teleseismic P coda.

2. DATA STACKING

Waveform stacking has several advantages over analysis of individual seismograms:

1. It generally increases the signal-to-noise ratio, making it possible to identify and
characterize weak seismic arrivals that are hard to resolve on single records.

2. It reduces the volume of data to be modeled to a more manageable level. For
example, the information in thousands of global seismograms can be reduced to a
single time-versus-epicentral-distance image of the average wave field.

3. It can provide a spatially averaged measure of the wave field that is less biased than
results from small numbers of seismograms. By processing all of the data, it
reduces the selection bias problem that may affect studies that focus on the most
visible or anomalous phases in individual records.

Conventional seismogram-stacking methods do not work well for imaging scattered
seismic arrivals because coda waves are generally incoherent among the different
recording stations, especially at the high frequencies where the scattered wave field is
typically observed. In other words, the timing of the peaks and troughs in the
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seismograms varies randomly among the records. Small-scale arrays are an important
exception to this and have provided valuable constraints on the slowness and back-
azimuth of scattered arrivals. However, our focus in this chapter concerns the use of
single stations that are too far apart for standard array processing techniques to work. In
this case, it is necessary to develop stacking methods that work for incoherent data.

One approach is to discard the phase information in the seismograms and consider
only their energy content as defined by their envelope functions. This method has been
used successfully to image PKP and PKKP precursors (Hedlin et al., 1997; Earle and
Shearer, 1997; Shearer et al., 1998), Pg coda (Earle and Shearer, 2001), and P coda
(Shearer and Earle, 2004).

Figure 1 illustrates the envelope-function stacking technique applied to P and its coda
(Shearer and Earle, 2004). Before stacking, we manually review the data and remove
seismograms with dropouts, data glitches, or contaminating arrivals from aftershocks or
local earthquakes. Once the data are cleaned, they are processed and stacked using the
following steps shown in Fig. 1:
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FiG. 1. Illustration of the different processing steps in the envelope-stacking technique. Starting
with each original broadband trace (a) band-pass filtering is applied, (b) the envelope function is
computed, (c) the power in the preevent noise is removed. The processed traces are then stacked (d).
Notice the large variability seen in the individual seismograms compared to the smooth stacked trace at
the bottom.
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(a) The traces are band-pass filtered between 0.5 Hz and 2.5 Hz. This frequency band
falls in a low noise region of the spectrum and provides the greatest sensitivity to
deep-Earth structure with scale length of about 10 km.

(b) The envelope function (e.g., Kanasewich, 1981) is calculated for each
seismogram.

(c) We assume that the noise and signal are uncorrelated so that, upon averaging, their
energies will sum. Thus, to account for varying noise levels between traces, the
envelope functions are squared and the average noise in a time window preceding
the reference phase (in this example the P wave) is subtracted from the entire trace.
Then, the square root of the noise corrected trace is taken. The squared envelope is
used because the recorded signal is the square root of the sum of the squared noise
plus the squared signal.

(d) The final stack is made by normalizing the traces to their maximum amplitudes,
aligning them on the reference phase arrival time, and averaging all traces in a
target distance window as a function of time.

We stack the traces in amplitude rather than power because we have found that this
produces slightly more robust results than power stacks. However, in practice the
differences between amplitude and power stacks are usually fairly small.

2.1. Shallow- Versus Deep-Earthquake Teleseismic P Coda

Results of this stacking method applied to teleseismic P coda are plotted in Fig. 2
(originally in Shearer and Earle, 2004), which compares stacks for over 7500 records from
shallow earthquakes (depth < 50km) and 650 records from deep earthquakes
(depth > 400 km). Data are taken from vertical- component seismograms from My = 6
to 7 events in the IRIS FARM archive from 1990 to 1999. The stacked envelopes are
binned at 5° distance intervals and 2-s time intervals. This figure shows the striking
difference in teleseismic coda strength between shallow and deep earthquakes. The
shallow-event coda is much stronger and longer-lasting than the deep-event coda. At
50 s following the P arrival, it is 2-5 times larger in amplitude (4-25 times larger in
energy). This difference indicates that teleseismic P coda from shallow events is dominated
by near-source scattering above 600-km depth. Note that both stacks should have equal
coda contributions from near-receiver scattering, but the energy difference between the
shallow and the deep coda is much more than a factor of two. However, as discussed in
Shearer and Earle (2004), this does not necessarily imply lateral variations in scattering
strength with stronger scattering in active earthquake areas. In fact, with Monte Carlo
modeling, it is possible to achieve a reasonable fit to both the shallow- and deep-earthquake
coda amplitudes with a single model in which scattering strength varies only with depth.

2.2. Regional Variations in Teleseismic P Coda Amplitude

The Shearer and Earle (2004) teleseismic P coda study considered only spherically
averaged coda amplitudes. Here, we analyze data from this study in more detail to identify
variations in coda levels among different source regions and station locations. Fig 3
illustrates such a difference between two Asian stations as seen in coda stacks of 120 quakes
recorded at YAK and 163 quakes recorded by AAK (all quake depths are less than 50 km).
Station AAK has consistently higher P coda amplitudes than station YAK.
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Fic. 2. A comparison between the shallow-event, envelope-function stack (dashed), and the
deep-event stack (solid line). Time is relative to P and the stacks have been scaled to the same
P-wave maximum amplitude. Note the much more extended coda from the shallow events.
Figure taken from Shearer and Earle (2004).

To characterize these variations systematically, we measure the average ratio of the P
coda amplitude to the P amplitude at source-receiver distances between 60° and 95° (the
observed ratio changes little over this distance interval). The P amplitude is measured as
the average absolute value in the demeaned trace in a 40-s window starting at the
predicted P arrival time. The coda amplitude is measured similarly in a 60-s window
starting 60 s after the P arrival time. To account for possible biasing effects related to the
specific subset of events recorded by each station, we assume that the logarithm of this
relative coda level, ¢, for the ith source and the jth receiver can be approximated as the
sum of a source term, ¢, and a receiver term, r,

log(c;7) = log(g;) +log(r;). )

This equation does not have a direct physical basis; it is an empirical approach to test how
much of the variation in the coda amplitudes can be explained with a simple decomposi-
tion into source- and receiver-side contributions. Because we have many receivers for
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FiG. 3. A comparison of stacked P coda amplitudes for shallow earthquakes (<50 km) between
stations AAK (dashed) and YAK (solid) at 30 and 90. Note the higher coda amplitudes for AAK.

each source and many sources for each receiver, this is an over-determined problem,
which we solve using a robust, iterative least squares approach. To remove the non-
uniqueness in this equation (a constant could be added to the log ¢ terms and subtracted
from the log r terms), we constrain the average log r to be zero.

Fig. 4 plots the resulting individual source and receiver terms ¢ and r. Before plotting,
we scale the receiver terms to have the same median value as the source terms. Symbol
size is proportional to the log deviation from the median amplitude ratio of 0.432. Plus
symbols have relatively high coda levels and diamonds have relatively low coda levels.
Because results can be quite variable for small numbers of traces, we only include terms
constrained by at least 10 traces. Overall, the quake coda levels have about twice the
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FiG. 4. Differences in teleseismic P coda amplitudes at source locations (top) and station
locations (bottom). Coda levels higher than the global median of 0.43 are plotted as 4+ symbols
and weaker levels are shown as diamonds, with the size of the symbol scaling as the logarithm of
the perturbation. Stations AAK and YAK (see Fig. 3) are labeled in the bottom figure.
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variability of the station coda levels. The median variations in quake coda levels are
about £16% while the median variations in station coda levels are about +8%. This is
consistent with near-source rather than near-receiver scattering being the dominant
contributor to teleseismic P coda, as is also implied by the differences in the shallow-
and deep-earthquake stacks plotted in Fig. 2. The relatively sharp changes in coda levels
that can be seen in these plots over short distance intervals also indicates that the bulk of
the coda originates from near-surface scattering, rather than from deeper in the mantle.

Both the quake and the station terms exhibit some degree of spatial coherence.
Stronger coda is seen from events in central Asia, the Kurils and South America and
weaker coda is observed in Japan, western North America, and the southwest Pacific.
The station terms are less coherent but generally have weaker coda in northeast Asia,
parts of Africa, and North America outside of California. There is little, if any, spatial
correlation between the source and the receiver terms. This may indicate that the near-
source and near-receiver scattering processes are different (i.e., more S-to-P near the
source, more P-to-P near the stations), or could reflect strong variations in heterogeneity
very close to earthquake source regions that do not always extend far enough to produce
correlated variations in coda strength for teleseismic arrivals at nearby seismic stations.

Our station term results have only limited correlation with the scattering Q (Qsc)
estimates at 1 Hz of Korn (1990, 1993) from P coda for 9 stations in Australia and around
the Pacific. We observe stronger than average P coda for stations GUMO and TATO,
which have lower than average Qs at 1 Hz in Korn (1993). In contrast, we also observe
relatively strong P coda for NWAO and weak P coda for AFI, opposite to Korn’s results.
Because of differences between our simple station term inversion method and the energy
flux modeling approach of Korn (1990, 1993), it is not clear how well correlated results
should be between the methods.

3. MONTE CARLO METHODS

Monte Carlo methods have been used in physics since the 1950s to model radiation
transport by using a computer to simulate the random scattering of large numbers of
individual particles [see Dupree and Fraley (2002) for a recent introduction to many of
these techniques]. The Monte Carlo approach uses computer-generated random numbers
to sample the different possible variables in a problem. For example, neutron scattering
can be simulated by tracking the behavior of individual neutrons, radiated in random
directions from a source and scattered in random directions during their propagation, thus
in effect simulating the results of an actual experiment. In general, the accuracy of the
solution grows with the number of particle trajectories that are computed and thus Monte
Carlo methods have become increasingly useful as faster computers have become
available. Typically, the algorithms converge such that the variance of the results
decreases as 1/4/n, where n is the number of particles.

The concept of seismic “particles” may not seem useful upon initial consideration
because there is no wave-particle duality for seismic waves, as exists for electromagnetic
waves. However, if one is willing to consider energy transport alone and discard phase
information in seismic records, then a particle-based, Monte Carlo approach can be very
valuable. It is particularly suited to studying scattering at high frequencies, where the
waveforms are incoherent and typical modeling efforts consider only the envelope
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function. It bridges the gap between Born theory for weak scattering and computationally
intensive finite difference/element calculations for complicated models.

3.1. Seismology Applications

The first use of the Monte Carlo approach in seismology was by Gusev and
Abubakirov (1987) who modeled acoustic wave scattering in a uniform whole space
using particles randomly radiated from an isotropic source. They assumed a constant
probability of scattering per unit volume, resulting in an exponential distribution of path
lengths. They did not explicitly include intrinsic attenuation but noted that it could easily
be modeled in the constant Q case by multiplying the energy of each particle by ¢ %72,
They considered both isotropic scattering and forward scattering with a Gaussian angle
distribution and showed that their results agree with the diffusion model at large lapse
times, but that only the forward scattering model produces realistic pulse broadening and
coda envelopes at short distances. Abubakirov and Gusev (1990) presented a more
detailed account of the Monte Carlo technique and used a forward scattering model to
compute master curves describing the relationships between the mean free path and both
pulse broadening and the intensity ratio of the direct and the scattered waves. Applying
these results to S-coda observations in Kamchatka, they obtained S-wave mean free paths
of 100-150 km over a 1.5-6 Hz frequency range. Gusev and Abubakirov (1996)
expanded their Monte Carlo method to include scattering angles predicted by specific
models of random velocity heterogeneity, including Gaussian and power-law media, and
argued that a power-law exponent of 3.5—4 is in qualitative agreement with the features
of observed S-wave envelopes.

Hoshiba (1991) used a Monte Carlo method to model isotropic S-wave scattering in a
uniform whole space, and demonstrated that the results agree with Born theory for weak
scattering and with the radiative transfer theory of Wu (1985) and the diffusion model for
strong scattering. Hoshiba (1994, 1997) extended his method to include depth-dependent
scattering strength, layered velocity models, and intrinsic attenuation. He simulated SH-
wave reflection and transmission coefficients at layer interfaces as probabilities of
reflection or transmission, which is a practical way to handle the energy partitioning at
interfaces without the complexities of generating additional particles.

Margerin et al. (1998) modeled isotropic S-wave scattering using a Monte Carlo
method for a layer over half-space model (i.e., the crust and the upper mantle) and
included both surface and crust-mantle boundary (Moho) reflected/transmitted phases,
using probabilities to handle reflection and transmission coefficients, but did not model S
polarity, phase conversions, and intrinsic attenuation. Margerin et al. (2000) extended
their method to fully elastic waves, including S polarity and phase conversions, and
modeled scattering off randomly distributed spherical inclusions within a uniform whole
space. They explored the dependence of their results of the relative size of the spheres
compared to the seismic wavelengths. Margerin and Nolet (2003a,b) applied a Monte
Carlo method to model PKP precursors with whole Earth P-to-P scattering in the mantle.
They showed that their results were in good agreement with geometrical ray theory for
the main PKP arrivals and that the scattered arrivals agreed with Born theory for weak
random velocity heterogeneity.

Bal and Moscoso (2000) included S-wave polarizations in Monte Carlo simulations of
randomly heterogeneous lithosphere and showed that S waves can become depolarized
after multiple scattering. Yoshimoto (2000) used a finite difference ray tracing method to
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implement a Monte Carlo method for a complex velocity profile for the lithosphere and
found that ray bending caused by velocity gradients and the Moho can have large effects
on the shape of the S coda envelope.

Wegler et al. (2006) and Przybilla et al. (2006) performed a series of tests of Monte
Carlo simulations based on radiative transfer theory, for both acoustic and fully elastic P-
and S scattering, and compared their results to those predicted by various analytical
solutions in 3D and finite difference solutions to the full wave equation in 3D. In general,
they found good agreement between the Monte Carlo approach and other methods,
except in the case of extreme velocity perturbations, such as can occur in volcano
seismology.

Although all of these methods work by computing trajectories for a large number of
particles, they differ in some important details. A fundamental distinction can be made
between two different approaches: (1) algorithms that simply count the number of
particles that hit different cells in the model (e.g., Gusev and Abubakirov, 1987, 1996;
Yoshimoto, 2000; Shearer and Earle, 2004) and (2) those that compute the probability of
particles at a series of discrete receivers (e.g., Hoshiba, 1991, 1994, 1997; Margerin et al.,
1998, 2000). The former provide the energy density at every point in the model and thus
can be termed global methods in contrast to the local nature of the calculations in (2).
Although for some models there are computational advantages to (2), the simplicity and
flexibility of (1) have made it a more popular choice, given the speed and storage
capabilities of modern computers.

3.2. Monte Carlo Implementation

The theoretical basis for the Monte Carlo approach is provided by radiative transfer
theory (e.g., Wu, 1985; Sato, 1995; Ryshik et al., 1996; Bal and Moscoso, 2000;
Margerin, 2005). We will not review this theory here. Instead, we will focus on the
practical aspects of writing a computer program to perform seismic Monte Carlo
calculations in an efficient manner for radially symmetric Earth models. As an example,
we will give details of the global elastic algorithm of Shearer and Earle (2004).

The fundamental principle involved is that each seismic “particle” represents an
energy packet and that our treatment of the particles (i.e., propagation, reflection/
transmission, phase conversions, and scattering) should be designed to conserve energy
in a logically consistent manner. We will use geometrical ray theory to compute particle
trajectories. A nice aspect of the particle approach is that geometrical spreading terms are
not required because the energy reduction with distance is naturally included as the
decrease in particle density as the particles spread out from the source. The energy
partitioning that occurs at interfaces or scattering points is handled not by splitting the
energy into different particles but by assigning appropriate probabilities to the changes in
particle directions and using computer-generated random numbers to sample these
probability distributions. Thus, we track only one particle at a time, making the code
straightforward to parallelize and run on multiple processors, if desired.

The output of a Monte Carlo simulation will typically appear noisy at first (i.e.,
producing spiky and irregular envelopes) when only a small number of particles are
computed, but will become increasingly smooth as more particles are included in the
calculation. The number of particles required to give adequate results will vary, depend-
ing upon the details of the model, the portion of the output wave field that is of greatest
interest, and how much resolution in time and space is desired.
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3.3. The Monte Carlo Source

Despite the fact that earthquake radiation patterns are not uniform, most Monte Carlo
simulations assume isotropic radiation from the source. This can be justified for two
reasons: (1) At high frequencies, observed P and S amplitudes show considerable scatter
compared to that predicted by double-couple sources (e.g., Nakamura et al., 1999;
Hardebeck and Shearer, 2003) presumably caused by strong crustal and near-surface
focusing and scattering effects. Thus, details of the radiation pattern tend to be lost during
high-frequency wave propagation. (2) Results are often averaged over many earthquakes
and stations at different azimuths from the source. This will lessen the bias caused for
individual ray paths by neglecting radiation pattern effects. However, it is important to
recognize that some bias may still be present. For example, if most earthquakes in a
region are strike-slip, the expected P-wave fraction of energy radiated in the near-vertical
direction is much less than that predicted by assuming an isotropic source. This bias
cannot be removed by averaging over azimuth. Isotropic average radiation will only
occur for a truly random distribution of focal mechanisms, which is unlikely to be the
case for real Earth observations.

If the background Earth model is radially symmetric, then the expected average energy
observed on Earth’s surface from an isotropic source will vary only as a function of
distance. It thus makes sense to combine the energy from all of the particles hitting the
surface at a particular distance (regardless of azimuth) to compute the average predicted
wave field. It follows that because of the symmetry of the problem and the randomness of
individual scattering events, it is only necessary to shoot the particles at a single azimuth
from the source. In this case, however, the number or the energy of the particles must be
weighted as sin 0, where 0 is the takeoff angle from the vertical, to account for the greater
number of particles expected at more horizontal takeoff angles for a spherically isotropic
source.

For efficiency it is usually desirable for ray tracing and other information to be
computed and stored at certain discrete values, in which case the sampling will be
limited to these values. It is not necessary for the takeoff angle sampling to be uniform,
provided suitable weights are assigned to the particles. This technique is termed event
biasing in the Monte Carlo literature. For example, the rays could be evenly sampled in
ray parameter rather than angle or proportionally more rays could be fired at steeper
angles for better sampling of core phases compared to crustal phases. Both upgoing and
downgoing rays from the source should be included unless the source is assumed to be
exactly at the surface. In Shearer and Earle (2004), we spray rays evenly spaced in 10,000
values of ray parameter (from p = 0 to p = 1/c, where c is the P or S velocity at the
source), and set the energy of the ith particle proportional to (0, — 0,_;) sin 0;, where the
takeoff angle 0; = sin™'(cp,). Note that ¢ dp = cos 0 d0, 0, — 0;_; = d0;, and thus (0; - 0,_;)
sin 6; is proportional to tan § when dp is constant.

For S waves, it is simplest to assume random polarizations for the particles leaving the
source, again making the assumption that radiation pattern differences will tend to
average out when results are combined from many different sources and receivers. In
addition, multiple scattering will at some point remove the information about the original
source polarization. In complete modeling of both P and S waves, an S-to-P total initial
energy scaling factor, g = EIs /Ef , must be assumed. This can be done by radiating ¢
times more S particles or by radiating equal numbers of P and S particles but assigning ¢
times more energy to the S particles. The latter approach is more efficient for resolving
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both P and S phases. Theoretical results for a double-couple source suggest that ¢ = 23.4
for a Poisson solid (e.g., Sato, 1984) and this factor was used by Shearer and Earle (2004).
However, this assumes that the S and P corner frequencies are identical and earthquake
source studies indicate that the P-wave corner frequency is typically higher than the
S-wave corner frequency, with observations ranging from ¢ = 9 to 14 (Boatwright and
Fletcher, 1984; Abercrombie, 1995; Prieto et al., 2004). These values are for total radiated
energy integrated over the entire frequency band and are not necessarily appropriate at the
single fixed frequency used in each Monte Carlo calculation. The question of the relative
sizes of P and S radiation from earthquakes is an active area of research to which scattering
studies may be able to contribute by better separation of intrinsic attenuation, scattering
attenuation, and source effects in observed earthquake spectra.

Because the number of radiated particles will vary depending upon how long the
program is kept running, it is simplest to initially consider only relative energy at the
source and perform the normalization to absolute energy at a later stage. This may be
accomplished by keeping track of the total initial energy of the radiated particles and
multiplying the observed energy by the ratio of the desired radiated energy to the total
initial particle energy. In many applications, only the relative time versus distance
behavior of the wave field is important, in which case the calibration to absolute
amplitude is not required.

3.4. Particle Trajectories

Most seismic applications of the Monte Carlo approach have assumed acoustic or
elastic body-wave propagation and used ray theory to track the particle trajectories. For
simple whole-space or homogeneous layer models, the ray paths are straight lines.
However, for more realistic models containing velocity gradients the ray paths are
curved. To save computer time when computing results for millions of particles, it is
advantageous in this case to precompute ray tracing results (time and distance) at discrete
values of ray parameter, p, and depth in the model. The Shearer and Earle (2004)
algorithm computed df and dx values within 10-km-thick layers in the model for
10,000 values of p, saving the results in separate arrays for P and S waves. Another
array records whether the ray passes through, reflects off, or turns (changes direction)
within each layer. Of course, a specific velocity versus depth model must be assumed.
Standard models such as PREM (Dziewonski and Anderson, 1981) and IASP91
(Kennett, 1991) predict body-wave travel times that generally agree within a few
seconds, but differences in the velocity gradients among the models can produce
significant differences in ray theoretical amplitudes.

Modeling of S-wave polarizations is complicated by the fact that the polarization will
rotate along curved ray paths. In radiative transfer theory, S-wave polarizations can be
handled using the Stokes parameters and this is the approach described in Margerin et al.
(2000) and Bal and Moscoso (2000). Shearer and Earle (2004) adopt the simpler scheme
of assigning S polarity as an angle in a local SV versus SH coordinate system, an angle
that will remain constant along curved ray paths in radially symmetric models, although
it will of course change following reflection/transmission or scattering events. This
approach is more limited than the Stokes method because it assumes that the S polariza-
tion is always linear, whereas phase shifts between the SV and SH components can occur
for some reflections at interfaces. Thus, the Shearer and Earle (2004) algorithm should be
considered only approximate for S polarizations.
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Fic. 5. Example particle trajectories for a Monte Carlo simulation method. The one-dimensional
background velocity model is defined as velocity points at a depth spacing of Az. In this example,
there is a velocity jump between layers 4 and 5 and the mean free path is constant within 2 different
scattering zones. See text for a description of the particle behavior.

Figure 5 shows some examples of particle trajectories. Here, the model is discretized at
depth intervals of Az. Consider the simple case of ray path ABC, which does not
experience any scattering. The ray is radiated downward from the source at a specific
ray parameter. The program marches downward through the layers, adding the precom-
puted time and distance increments for each ray segment. In layer 3, the ray experiences a
turning point and its vertical direction changes. The program then goes up through the
layers and continues to accumulate time and distance increments. The direction changes
again when the ray reflects off the free surface at B.

The free surface is important because it is normally where we output results of Monte
Carlo simulations to compare with observations. For isotropic sources and Earth models
that are radially symmetric in their bulk properties (i.e., excluding random small-scale
perturbations), the observed wave field is a function of time and epicentral distance only.
It is therefore convenient to discretize the output into small bins in a time versus distance
array (the distance increment Ax is shown in Fig. 5), into which the accumulated energy
from each arriving seismic particle is summed. At this point, separate results can be
saved for P- and S energy (derived from the wave type) as well as the vertical, radial, and
tangental components (derived from the local ray angle, wave type, and S polarization).
Later, these energies are normalized by the surface area in each bin (e.g., to account for
the greater surface area between 90° and 91° from the source compared to between 10°
and 11° from the source). In fully elastic calculations, P-to-S and S-to-P conversions
occur at the free surface and must be included in the modeling (see Section 3.4.1 below).

Following its reflection at point B, the ray again travels downward until it turns and
reflects again at surface point C, where the ray energy is added to a different part of the
time—distance array. The calculation for each particle continues until a maximum time
limit is reached, at which point the algorithm starts over with a new particle from the
source.

3.4.1. Interfaces
All standard Earth models contain significant velocity changes at the surface, the

Moho, the CMB, and the inner-core boundary (ICB) and minor velocity jumps near 410-
and 660-km depth. Thus, it is important for Monte Carlo simulations to correctly model
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the reflection and the transmission behavior at interfaces. As described in Hoshiba (1997)
and Margerin and Nolet (2003a), this is handled by computing energy-normalized
reflection and transmission coefficients and converting them into probabilities that are
used to pick (based on a computer-generated random number) the wave type (P or S),
direction (up or down), and polarization (in the case of S waves) for a single particle that
leaves the interface. In this way the energy partitioning at each interface is modeled
stochastically as the average response of thousands of individual particles. Because these
are spherical interfaces, Snell’s law is obeyed and the ray parameter does not change.

In Fig. 5, there are two interfaces, one at the free surface and one between layers 4 and
5, where the velocity jumps discontinuously. For program efficiency, the reflection and
the transmission coefficients are precomputed for all of the discrete values of ray
parameter used to calculate the ray paths. Assuming the ray path ABC represents a P
wave, there is some energy converted to SV upon each free surface reflection. Thus, there
was a random chance that the particle might have changed to an S wave (with the
probability determined by the energy normalized reflection coefficient), but in this
example we assume that it did not. Ray path AD hits interface 2 and is reflected.
However, note that other particles traveling along the exact same path may be transmitted
though the interface. Whether a particle is reflected or transmitted will depend upon the
value of a random number generated by the computer whenever the particle hits an
interface.

The interface energy partitioning described above will result in the majority of
particles going into the seismic phases with the largest reflection and transmission
coefficients and thus into the highest energy parts of the wave field. This may not always
be desirable if a target phase of interest is of relatively low amplitude because of a small
reflection coefficient along its ray path, in which case most of the particles are “wasted”
and comparatively few particles will illuminate the phase. Examples of such phases
include PcP, PKiKP, and PKKP along much of their travel time curves. To improve the
performance of Monte Carlo algorithms in these cases, the appropriate reflection coeffi-
cients can be artificially increased, provided that the energy of the reflected particles is
decreased and the energy of transmitted particles is increased, such that average energy
over many particles is preserved even if energy conservation is violated for individual
particles. This is an example of a particle biasing technique, which is a common approach
in many Monte Carlo analyses in physics, although to our knowledge it has not yet been
applied in seismology.

3.4.2. Scattering Events

Scattering strength may be described either in terms of the probability of scattering as
the particle passes through a given volume or as the mean free path between scattering
events. The scattering coefficient, g, is defined as the scattering power per unit volume
per unit solid angle (e.g., Sato, 1977) and has units of reciprocal length. The total
scattering coefficient, g, is defined as the average of g over all directions and can also
be expressed as

go=10", (2)

where ¢ is the mean free path. In general, these parameters will vary with depth in the
Earth for physically based random heterogeneity models because they are dependent on
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the seismic wave number k. Thus, one approach would be to test for a scattering event by
generating random numbers at short intervals along the ray path. This is the best method
in some respects because it can accurately handle depth-dependent scattering of arbitrary
complexity and is straightforward to code. However, it requires generation of a large
number of random numbers along the ray paths. Thus, it is more efficient to approximate
the scattering probability as constant within large depth intervals, in which case the path
length r to a scattering event is given by an exponentially distributed random number
with mean value ¢ or ¢3 for P waves and S waves, respectively. Thus, individual values
of r for P and S waves are computed as

rp = —ln x
rs = —5In x, (3)

where x is a random number between 0 and 1. This is the approach taken by Margerin and
Nolet (2003a,b) and Shearer and Earle (2004) and is accurate assuming that the mean free
path is much larger than the ray path segments in the model.

Note that the depths separating the intervals of different scattering probabilities need
not coincide with the velocity interfaces in the model. Whenever a particle enters a layer
with a different scattering probability, a random number determines the ray path length to
the next scattering event. As the computer tracks the ensuing particle trajectory, if the
accumulated path length within the layer exceeds this number, then a scattering event
occurs. If the particle leaves the layer and enters a layer with a different scattering
probability, then a new random number is generated for the new layer.

Consider ray AEFGHIJKL in Fig. 5. In this case, there is a uniform scattering
probability in layers 1-3 and a different scattering probability in layers 4—7. When
the ray leaves the source, a random number determines the path length to the next
scattering point according to Eq. (3) and the mean free path in the top scattering zone.
For this example, this length exceeds the distance AE and the particle is not scattered.
At point E, a new random path length is computed from the mean free path for the
lower scattering zone. This path length is exceeded by the downgoing ray somewhere
in layer 6 and a scattering event occurs at point G (for coding simplicity, scattering
events are forced to occur at boundaries between layers). The random orientation of the
scattered ray is then computed (see Section 3.5), which in general will involve a change
in ray parameter, ray vertical direction (upgoing or downgoing), ray azimuth and may
also involve a change in wave type (P or S). A new path length to the next scattering
event is computed for the scattered ray. The particle is reflected at H and another
scattering event occurs at I. The scattered particle is then transmitted at J and leaves the
lower scattering zone at K, at which point a path length is computed for the distance to
the next scattering event in the upper scattering zone. The particle hits the free surface
at L and the energy of the particle is added to the appropriate bin in the time versus
distance array.

3.5. Scattering Angles

Once a scattered event occurs, the next step is to assign a new particle trajectory, and in
the case of fully elastic simulations to assign the new wave type (P or S) and S-wave
polarization. The simplest approach is to assume that the scattering is isotropic, that is,
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the probability is equal in all directions. However, Gusev and Abubakirov (1987) and
Abubakirov and Gusev (1990) showed that this approach does not lead to realistic early
coda and pulse broadening of the direct arrival. To fit most seismic observations, some
form of anisotropic scattering is required with more scattering in the forward direction.
This can be achieved with empirical scattering functions, such as the Gaussian function
analyzed by Gusev and Abubakirov. However, this approach does not provide a
connection to the physical properties of the velocity and density perturbations that
are causing the scattering.

Thus, most recent Monte Carlo simulations in seismology compute scattering probabil-
ities based on a physical model of the scattering medium, which is generally done using
Born scattering coefficients for random heterogeneity models. Although Born theory is for
single scattering, it can be used to model multiple scattering when the distance between
scattering events is much longer than the seismic wavelength and the scale length of the
random heterogeneity, which is generally the case for elastic scattering in the Earth.
The required conditions can be expressed as (e.g., Wegler et al., 2006)

(> /21 (4)

and

(> a, (5)

where / is the mean free path, 1 is the seismic wavelength, and « is the heterogeneity
correlation distance. Comparisons to finite difference calculations have confirmed the
validity of Born theory to compute scattering probability in radiative transfer theory
(Wegler et al., 2006), except in cases of extreme scattering from very heterogeneous
media (such as may occur in volcano seismology). For the P coda simulations described
here, the smallest mean free path is 82 km, which is much longer than the wavelength of
mantle P waves at 1 Hz and the 8-km correlation length of the random heterogeneity
models.

We now summarize the Born results that are necessary to implement a fully elastic
Monte Carlo method that includes P-to-S and S-to-P scattering, using the appropriate
results from Sato and Fehler (1998; hereafter referred to as S&F; see also Wu, 1985, and
Wu and Aki, 1985a,b, for more details on Born theory in seismology). The simplest
equations are obtained when the P velocity o and S velocity f are assumed to have the
same fractional velocity fluctuations (S&F, 4.47):

da(x) _ 5p(x)

%o ﬁo

f(X) = ) (6)

where o and f§y are the mean P and S velocities of the medium. We further assume that
the fractional density fluctuations are proportional to the velocity variations (S&F, 4.48):

op(x)
Po

= vé(x), (7)

where v is the density/velocity fluctuation scaling factor.
The basic scattering patterns are given by (S&F, 4.50)
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where X}_)P is the radial component of P-to-P scattering, Xis is the Y component of P-to-S
scattering, and so on. The angles iy and { are defined as in Fig. 6 and the velocity ratio
Yo = oo/Po-

Assuming a random media model, the scattered power per unit volume is given by the
scattering coefficients for the various types of scattering (P to P, P to S, etc.) (S&F, 4.52):
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4
where [ = w/f is the S wave number for angular frequency o, P is the power spectral
density function (PSDF) for the random media model (see S&F, pp. 14-17). A popular

choice for P is the exponential autocorrelation function, in which case we have
(S&F, 2.10)

8 2.3
P(m) = &’ (10)
(14 a2m?)*

where « is the correlation distance, ¢ is the root mean square (RMS) fractional fluctuation
(e = (é(x)?)), and m is the wave number [i.e., the argument of the P functions in Eq. (9)
above]. For example,

2.3
P(zlsinf) - Smea” (11)
(1 + 421 sin® %)
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FiG. 6. The ray-centered coordinate system used in the scattering equations. The incident ray is
in the x5 direction. For S waves, the initial polarization is in the x; direction. The scattered ray
direction is defined by the angles ¥ and (. The scattered ray polarization is defined by X,, X, and
X:. Figure taken from Shearer and Earle (2004).

The PSDF defines the strength of the heterogeneity as a function of its scale length and
controls how the amplitude of the scattering varies with seismic wavelength. Observa-
tions at a single frequency, such as the P coda results presented in this chapter, mainly
constrain the heterogeneity at scale lengths near the seismic wavelength and cannot
determine the PSDF very completely. Analysis of broadband data and consideration of
scattered arrival amplitudes as a function of frequency will be necessary to make
quantitative estimates of the PSDF.

The total scattering coefficients, ggP , and so on, are given by the averages of these
coefficients over the unit sphere. The mean free path ¢ for a ray between scattering events
is given by the reciprocals of these coefficients:

b1
- ggP +ggs

s 1
ot (12)

and these values are used to assign path lengths using random numbers as described above.
When a scattering event occurs, a second random number is used to decide whether the
scattered wave is P or S, according to the relative sizes of gf* and gb° for an incident P wave
or ggP and ggs for an incident S wave. A third random number (see below) is then used to
determine the scattering angle (1 and {) and the S polarization (if required). The particle
then travels along its new ray direction until the next scattering event.

Despite the apparent complexity of the scattering equations, there are only three free
parameters used to describe this model: the RMS fractional fluctuation ¢, the correlation
distance a, and the velocity density scaling factor v. Of course, a more general PSDF than
the exponential model would require more parameters. Larger values of v will generally



OBSERVING AND MODELING ELASTIC SCATTERING 185

increase the amount of backward scattering. Shearer and Earle (2004) use v = 0.8, an
estimate for the lithosphere obtained using Birch’s law (S&F p. 101). Simpler equations
can be obtained for the case of velocity perturbations alone or for purely acoustic waves.
The random heterogeneity described by Eq. (11) is isotropic so that the scattering
properties do not depend upon the angle of the incident wave. However, anisotropic
PSDFs may be important in some regions of the Earth, in which case more free
parameters will be required to define the model, which may also affect the relative
strength of forward versus backscattering (e.g., Hong and Wu, 2005).

An efficient way to implement these scattering kernels in a computer program is to
precompute the scattered power and S-wave polarizations at a series of small intervals of
solid angle. The probability of scattering at each discrete angle is then given by its
relative power and a single random number can be used to assign the scattered ray path.
For example, consider the scattering pattern plotted in Fig. 7 [the S-to-P coefficient g5" in
Eq. (9), computed for y, = V3,v = 0.8, f, = 6/\/3 km/s,w = 2m,¢ = 0.01, and a =
1 km], which is plotted at 6° increments in i and {. Assign a unique cell number to each
of the n cells in the scattering surface and save the normalized scattering probabilities in a
one-dimensional array, P, of dimension n. Define a second array, S, with the cumulative
probabilities in P, that is, S(1) = P(1), SG@ + 1) = S(@) + P(i + 1), S(n) = 1. The scattered
ray angle is then defined by the smallest value of S that is larger than a computed random
number between 0 and 1.

This approach has the computational advantage that the scattering probability arrays are
computed only once and then angles are obtained for individual scattering events during
the Monte Carlo simulation from a single random number, without the need to recompute
any of the terms in Eq. (9). The accuracy of this approach depends upon how finely the
scattering angles are sampled. Shearer and Earle (2004) used an angle spacing of 1.8°. If
desired, additional random numbers can be used to add a small amount of scatter to the ray
angle so that the scattered ray angles are not restricted to the exact angles of the pre-
computed cells. The final step is to convert from the ray-based coordinate system used to
define the scattering angles (i.e., as plotted in Fig. 7) to the absolute ray parameters needed
to continue propagating the particle in the model. These include the ray azimuth (degrees
from north), the ray parameter (approximated as the closest ray parameter in the precom-
puted table), and the ray vertical direction (upgoing or downgoing).

The scattering depends on the wave number, which is a function both of the wave
frequency and the local background seismic velocity. Thus, Monte Carlo calculations
that include scattering must be performed for a specific frequency. In addition, Earth’s
changing velocity with depth results in scattering kernels that vary continuously with
depth. For the most accurate whole-Earth calculations, the kernels could be computed
and stored at 10-km depth intervals. But this would require random numbers to be
generated every 10 km along each ray path, greatly slowing the code. Thus, for practical
purposes, it is useful to approximate the scattering properties, including the mean free
path, as constant within fairly coarse depth intervals. Margerin and Nolet (2003a) assume
that the mean free path is constant within the entire mantle. Shearer and Earle (2004) use
four mantle layers, separated at depths of 200, 600, and 1700 km.

3.6. Intrinsic Attenuation

Energy converted to heat or crystal dislocations during wave propagation is termed
intrinsic attenuation (as opposed to scattering attenuation in which some energy in the main
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Fic. 7. Anexample of an S-to-P scattering pattern as a function of ray angle, computed using the
Born equations for a random media model. The distance from the origin gives the value of the
coefficient g5% in Eq. (9). The incident S wave is traveling in the x5 direction and is polarized in the
X direction.

pulse is scattered into other seismic waves). Intrinsic attenuation defined by a quality factor
0 will reduce the wave energy by ¢ /<, where o = 2f is the angular frequency and ¢ is
the travel time along the ray. For global Earth models, Q varies strongly with depth so this
correction is most easily performed in Monte Carlo methods by accumulating a value
of r* = f dt/Q along each particle. The energy at any desired point (such as when the
particle hits the surface) is then computed using the reduction factor ™",

For fully elastic calculations, both P- and S-wave attenuation must be defined. The
PREM Earth model (Dziewonski and Anderson, 1981) contains depth-dependent values
for both bulk and shear attenuation, “Q and #Q, from which can be computed P and S
factors, “Q and ﬁQ. However, the PREM values are accurate only at frequencies below
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about 0.2 Hz because of the frequency dependence of Q at higher frequencies (e.g.,
Sipkin and Jordan, 1979; Lundquist and Cormier, 1980; Anderson and Given, 1982;
Der et al., 1986; Warren and Shearer, 2000). At 1 Hz, there is much less attenuation than
predicted by the PREM model. Warren and Shearer (2000) analyzed high-frequency P
and PP spectra and proposed a frequency-dependent mantle P-attenuation model that is
generally consistent with prior work. At 1 Hz, *Q = 227 from 0- to 220-km depth and
*Q = 1383 from 220 km to the CMB. Corresponding S attenuation can be computed
using #Q = (4/9)*Q, a commonly used approximation that assumes a Poisson solid and
that all attenuation is in shear. The outer core is generally assumed to have zero attenua-
tion, but the inner core is observed to be strongly attenuating (e.g., Bhattacharyya et al.,
1993; Yu and Wen, 2006), with *Q values varying between about 200 and 600 and some
evidence of depth dependence.

Itis likely that most high-frequency estimates of Q derived from teleseismic body waves
contain a mixture of both intrinsic and scattering attenuation. Thus, these published values
are only useful as a starting point for intrinsic Q in whole-Earth Monte Carlo simulations;
the true intrinsic Q values are likely to be higher once scattering effects are included.
Shearer and Earle (2004) found this to be the case in their Monte Carlo modeling of
teleseismic P amplitudes and coda at 1 Hz, for which they obtained “Q = 450 from 0 km to
200 km and *Q = 2500 between 200 km and the CMB, values significantly higher than the
Warren and Shearer (2000) Q values derived from P and PP spectra.

4. FiT TO TELESEISMIC P Cobpa

Figure 8 shows the fit achieved to stacks of teleseismic P coda at 1 Hz by Shearer and
Earle (2004) using their Monte Carlo method. The bottom plots show stacks of P coda
amplitudes (obtained using the method described in Section 2) relative to the maximum
P-wave amplitude for both shallow and deep earthquakes. These plots discard absolute P
amplitude information, which is shown separately in the top plots. P amplitude versus
distance is particularly sensitive to the intrinsic attenuation in the mantle. To model these
observations, Shearer and Earle (2004) found that most scattering occurs in the litho-
sphere and upper mantle, but that a small amount of lower-mantle scattering was also
required. Their preferred exponential autocorrelation random heterogeneity model
contained 4% RMS velocity heterogeneity at 4-km scale length from the surface to
200 km depth, 3% heterogeneity at 4-km scale between 200 km and 600 km, and 0.5%
heterogeneity at 8-km scale length between 600 km and the CMB. They assumed equal
and correlated P and S fractional velocity perturbations and a density/velocity scaling
ratio of 0.8. Intrinsic attenuation was *Q; = 450 above 200 km and *Q; = 2500 below
200 km, with PQ, = (4/9) *Q, (an approximation that assumes all the attenuation is
in shear). This model produced a reasonable overall fit, for both the shallow- and
deep-event observations, of the amplitude decay with epicentral distance of the peak P
amplitude and the P coda amplitude and duration (see Fig. 8). These numbers imply that
at 1 Hz, the total attenuation is dominated by scattering in the upper mantle and by
intrinsic energy loss in the lower mantle.

To show the sensitivity of coda amplitudes to changes in the strength of the heteroge-
neity, Fig. 9 plots Monte Carlo predictions for a model with 30% less RMS heterogeneity
(at all mantle depths) and a model with 30% more RMS heterogeneity. The resulting
mean free paths in the upper 200 km are 82 km, 140 km, and 283 km for the three
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Fic. 8. Comparisons between envelope function stacks of teleseismic P-wave arrivals (solid
lines) with predictions of a Monte Carlo simulation for a whole-Earth scattering model (thin lines)
as obtained by Shearer and Earle (2004). The left panels show results for shallow earthquakes
(<50 km); the right panels are for deep earthquakes (>400 km). The top panels show peak P-wave
amplitude versus epicentral distance. The bottom panels show coda envelopes in 5° distance bins
plotted as a function of time from the direct P arrivals, with amplitudes normalized to the same
energy in the first 30 s. Figure adapted from Shearer and Earle (2004).

models. As expected, the coda amplitudes are very sensitive to the strength of the
heterogeneity. At distances betwen 40 and 100 degrees, the differences in coda level
are difficult to see at times later than about 150 s. However, at closer distances the
differences persist to much longer times.

All of the P-coda observations and modeling presented here are for the vertical
component. However, it is also possible to constrain mantle heterogeneity and scattering
by studying the transverse component of teleseismic P coda (Nishimura et al., 2002;
Kubanza et al., 2006). Our Monte Carlo code computes and saves all three components
of output, but we have not yet analyzed the transverse component results.

5. CONCLUSIONS

Envelope-stacking methods and Monte Carlo modeling provide a powerful set of tools
for analyzing whole-Earth scattering. Detailed applications of these approaches to a
variety of seismic phases have only begun, but promise to provide reliable constraints
on the average strength of small-scale heterogeneity as a function of depth in the mantle
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Fic. 9. A comparison of Monte Carlo-predicted P-coda amplitudes for the Shearer and Earle
(2004) heterogeneity model (solid line), a model with 30% more root mean square (RMS)
heterogeneity (dotted line), and a model with 30% less RMS heterogeneity (dashed line). The
Shearer and Earle exponential autocorrelation random heterogeneity model contains 4% RMS
velocity heterogeneity at 4-km scale length from the surface to 200-km depth, 3% heterogeneity at
4-km scale between 200 km and 600 km, and 0.5% heterogeneity at 8-km scale length between
600 km and the core-mantle boundary. It contains equal and correlated P and S fractional velocity
perturbations and a density/velocity scaling ratio of 0.8. Intrinsic attenuation is “Q; = 450 above
200 km and “Q; = 450 above 200 km and “Q; = 2500 below 200 km, with ﬁQ, = (4/9) “Q,.

and inner core and the relative strength of intrinsic and scattering attenuation mechan-
isms. In addition to their value in resolving details of Earth structure, these results should
help in making better estimates of earthquake source spectra, including the relative sizes
of P and S corner frequencies, high-frequency spectral decay rates, and the ratio of
radiated S energy to radiated P energy. Whole-Earth scattering studies and Monte Carlo
simulations will become increasingly practical as global seismic data become more
readily available and computer speeds continue to improve. In addition, it is clear that
significant lateral variations in scattering strength exist in many regions, as can be seen in
simple comparisons of teleseismic P coda levels among different stations and sources.
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