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S U M M A R Y
Earthquake stress drops are often estimated from far-field body wave spectra using mea-
surements of seismic moment, corner frequency and a specific theoretical model of rupture
behaviour. The most widely used model is from Madariaga in 1976, who performed finite-
difference calculations for a singular crack radially expanding at a constant speed and showed
that f̄ c = kβ/a, where f̄ c is spherically averaged corner frequency, β is the shear wave speed,
a is the radius of the circular source and k = 0.32 and 0.21 for P and S waves, respectively,
assuming the rupture speed Vr = 0.9β. Since stress in the Madariaga model is singular at the
rupture front, the finite mesh size and smoothing procedures may have affected the resulting
corner frequencies. Here, we investigate the behaviour of source spectra derived from dynamic
models of a radially expanding rupture on a circular fault with a cohesive zone that prevents a
stress singularity at the rupture front. We find that in the small-scale yielding limit where the
cohesive-zone size becomes much smaller than the source dimension, P- and S-wave corner
frequencies of far-field body wave spectra are systematically larger than those predicted by the
Madariaga model. In particular, the model with rupture speed Vr = 0.9β shows that k = 0.38
for P waves and k = 0.26 for S waves, which are 19 and 24 per cent larger, respectively, than
those of Madariaga. Thus for these ruptures, the application of the Madariaga model overes-
timates stress drops by a factor of 1.7. In addition, the large dependence of corner frequency
on take-off angle relative to the source suggests that measurements from a small number of
seismic stations are unlikely to produce unbiased estimates of spherically averaged corner
frequency.

Key words: Earthquake dynamics; Earthquake source observations; Dynamics and mechan-
ics of faulting.

1 I N T RO D U C T I O N

Characterization of earthquake source parameters is important for
understanding the physics of source processes and seismic hazard.
One of the key earthquake source parameters is the static stress drop
�σ , that is, the difference between the average state of stress on
the fault before and after an earthquake. Stress drop provides hints
on the scaling of earthquake-source parameters (e.g. Aki 1967;
Abercrombie 1995; Allmann & Shearer 2009) and insights into tec-
tonic environments in which earthquakes occur (e.g. Kanamori &
Anderson 1975; Allmann & Shearer 2007, 2009). For example, All-
mann & Shearer (2009) analysed seismic spectra of 2000 mb ≥ 5.5
earthquakes worldwide and found that their stress drop estimates
range from 0.3 to 50 MPa with a median value of 4 MPa. Although
there are considerable variations in the estimated stress drops within
earthquakes of the same magnitude, the median stress drops appear
to be relatively constant with magnitude (Allmann & Shearer 2009).

Stress drop is also used as a primary input parameter for ground
motion simulations with stochastic techniques for quantification of
seismic hazards (e.g. Graves et al. 2010).

Stress drop is proportional to the ratio of total slip to rupture size.
Because the physical size of the source is typically inaccessible to
direct observation, it is commonly estimated from far-field body
wave spectra using measurements of corner frequencies fc and a
theoretical model of rupture behaviour. The source dimension and
the seismic moment, obtained from the low-frequency part of the
spectra, are then used to compute stress drop. Thus, although stress
drop is fundamentally a static parameter (it can be obtained from
geodetic observations following large earthquakes), it is often es-
timated in a way that relies on the validity of a specific theoretical
model of rupture dynamics.

Accurate determination of stress drops from body wave observa-
tions is difficult not only because of uncertainties in observations
and corrections for path effects, but also due to the fact that the
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Seismic source spectra 1003

methods for estimating stress drop are derived from a number of
assumptions about the dynamics of the source. In particular, there
is no agreement among investigators on which theoretical model
should be used for estimating the source dimension, hampering
comparisons among different stress-drop studies.

Standard assumptions for estimating stress drop involve two key
equations. In the absence of detailed knowledge of the source ge-
ometry, a circular source is generally assumed, in which case the
analytical solution for uniform stress drop is (Eshelby 1957)

�σ = 7

16

Mo

a3
, (1)

where Mo is the seismic moment and a is the source radius. By
assuming a theoretical rupture model, the source radius can be
related to the spherical average of corner frequencies f̄ c of body
wave seismic spectra through (e.g. Brune 1970; Madariaga 1976)

f̄ c = k
β

a
, (2)

where β is the shear wave speed near the source and k is a constant
that relates to the spherical average of corner frequencies for a
specific theoretical model. Combining eqs (1) and (2) gives

�σ = 7

16

(
f̄ c

kβ

)3

Mo. (3)

Hence, the stress drop of an earthquake can be estimated from far-
field body wave spectra using spherically averaged measurements of
corner frequency f̄ c, together with seismic moment Mo determined
from the low-frequency part of the spectra. Note that any uncertainty
in f̄ c, k or β, is cubed when computing stress drop.

A key issue is that the choice of k in eq. (2) depends on which
theoretical relationship is being used to relate corner frequency and
source radius. Many investigators (e.g. Hanks & Thatcher 1972;
Archuleta et al. 1982; Ide et al. 2003; Oth et al. 2010; Baltay
et al. 2011; Cotton et al. 2013) used the model of Brune (1970),
which assumed a simple but somewhat ad hoc kinematic model for a
circular fault and obtained k = 0.37 for S waves. Others (e.g. Prejean
& Ellsworth 2002; Stork & Ito 2004; Imanishi & Ellsworth 2006)
used the analytical model of Sato & Hirasawa (1973) in which the
rupture nucleates at a point, spreads radially with a constant rupture
speed, and stops abruptly at the source radius. In the model of Sato
& Hirasawa (1973), which was constructed by assuming that the
static solution of Eshelby (1957) holds at every successive instant
of rupture formation under uniform stress, k depends on the rupture
speed Vr with k p = 0.42 for P waves and k s = 0.29 for S waves for
Vr = 0.9β. An unphysical feature of the model of Sato & Hirasawa
(1973) is that particle motion ceases at the same instant, everywhere
over the fault plane.

The model of Madariaga (1976) has perhaps been the most widely
used (e.g. Abercrombie 1995; Prieto et al. 2004; Abercrombie &
Rice 2005; Shearer et al. 2006; Allmann & Shearer 2007, 2009;
Yang et al. 2009). Madariaga (1976) performed dynamic calcula-
tions for a singular crack spreading radially at a constant rupture
speed using a staggered-grid finite-difference method and found
that k p = 0.32 for P waves and k s = 0.21 for S waves for Vr = 0.9β.
Since the rupture front in the Madariaga model is characterized by a
singular crack, the finite mesh size and smoothing procedures intro-
duce some artificial effects, which influence the corner frequencies
of the far-field spectra and hence the value of k.

As one can see from eq. (3), the difference between Brune’s
k = 0.37 and Madariaga’s k = 0.21 leads to a factor of 5.5 dif-
ference in stress drop; thus assuming the same S-wave speed β,

the Madariaga model translates to stress-drop estimates 5.5 times
smaller. This means that even in an idealized scenario of circu-
lar earthquake rupture, the absolute level of stress drop is highly
uncertain, motivating further investigation of this problem. (For
a comprehensive summary of various k from different theoretical
models, see Dong & Papageorgiou 2002.)

Here, we construct a dynamic model of expanding rupture on a
circular fault, similar to that of Madariaga (1976), but with a co-
hesive zone that prevents a stress singularity at the rupture front.
Our goal is to study the simplest class of rupture models that are
physically realizable, that is, have no stress singularities, and that
are generated by simulations with a proper numerical resolution.
We simulate scenarios of dynamic rupture nucleating at the centre
of the fault, propagating at a constant rupture speed and stopping at
the edge (Section 2). Unlike the model of Sato & Hirasawa (1973),
this model results in spontaneous healing of slip due to the ar-
rivals of stopping phases over the source area. We then compute
the corresponding far-field body wave displacement for a homoge-
neous elastic whole space using the representation theorem of Aki
& Richards (2002). We analyse the behaviour of body wave spec-
tra (Section 3), the relation between the corner frequency and the
source radius and the dependence of corner frequencies on rupture
speeds (Section 4). We discuss uncertainties in estimation of stress
drop and the implications of our results for stress drops reported in
previous observational work (Section 5).

2 C O H E S I V E - Z O N E M O D E L
O F A C I RC U L A R FAU LT

We consider a circular source of radius a embedded in an infinite
homogeneous, isotropic elastic medium (Fig. 1a). To create a source
model closely related to that of Madariaga (1976), we follow the
procedure used in the studies of Andrews (1985) and Dunham &
Bhat (2008) in which the shear strength τ st of the fault weakens
linearly at a rate Aw with distance within the cohesive zone:

τst = max{τd, τd + Aw(|r| − Vrt)} , (4)

where τ d is dynamic shear strength and Vr is the rupture speed
(Fig. 1b). The fault stressed initially at τ o does not move until shear
stress reaches the fault strength τ p, which is not specified a priori,
but depends on the dynamic strength τ d and the weakening rate
Aw (Fig. 1b). The shear stress is always equal to the shear strength
during the sliding, but can be smaller than the shear strength (i.e.
stress overshoot) once the sliding terminates.

In this model, the rupture nucleates at the centre of the fault, and
the circular rupture front expands at a constant speed close to Vr.
Fault growth stops instantaneously as the rupture runs into the zone
of zero shear stress outside the source radius a. The level of shear
stress outside of the circular source can be arbitrary as long as it
is much smaller than the dynamic strength τ d. In the limit where
the weakening rate Aw becomes infinitely large (Fig. 1b), the model
approaches a singular crack model. Note that eq. (4) is different
from the commonly used slip-weakening friction law, where the
resulting rupture becomes spontaneous, leading to a more complex
source model with set of complicated waveforms. For simplicity,
we keep Vr fixed, but the model is still dynamic in the sense that we
solve for the fault motion given the rupture speed Vr and prescribed
dynamic stress drop �σ d (sometimes called effective stress).

We solve the elastodynamic equation coupled with the fracture
criterion (eq. 4) using a spectral element method (Komatitsch &
Vilotte 1998; Kaneko et al. 2008; Kaneko & Lapusta 2010). We
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1004 Y. Kaneko and P. M. Shearer

Figure 1. Model geometry and fault constitutive response. (a) A circular fault patch of a radius a embedded in an infinite medium. Pre-stress τ o is uniform
over the fault patch and zero outside. (b) Fracture criterion used in this study and that assumed in Madariaga (1976). In our study, fault strength increases
linearly from |r| = Vrt (as shown by a grey line) within the cohesive zone. Slip begins when the shear stress τ on the fault reaches the shear strength τ p.

choose a large enough computational domain such that waves re-
flected by the boundaries of the finite domain do not propagate back
to the source area. Following the approach of Madariaga (1976),
only the y-component of slip and shear traction is solved numeri-
cally (Fig. 1a); there is no rake rotation as the circular rupture front
advances. To produce well-resolved numerical results, we ensure
that there are at least 7–10 computational node points within a cohe-
sive zone. For example, for a model with the smallest cohesive-zone
size that we considered, there are 305 node points (or 76 spectral
elements) along the radius of the circular fault. The spectral element
model incorporates artificial viscosity of the Kelvin–Voight form
to suppress spurious oscillations generated by the fault slip at fre-
quencies that are too high to be resolved by the mesh (Appendix A).
The dynamic rupture code has been verified through the Southern
California Earthquake Center Dynamic Rupture Code Verification
Exercise (Harris et al. 2009) and has been used in studies of spon-
taneous dynamic rupture (Kaneko et al. 2011; Kaneko & Fialko
2011; Konca et al. 2013).

A dimensional analysis of the problem allows for the repre-
sentation of solutions in terms of non-dimensional variables. We
choose the following non-dimensionalizations similar to those in
Madariaga (1976):

Length r ′ = r/a, (5)

Time t ′ = tβ/a, (6)

Stress σ ′
i j = σi j/�σd, (7)

Displacement u′
i = uiμ/(�σda), (8)

Weakening rate A′
w = Awa/�σd, (9)

Seismic moment M ′
o = Mo/(�σda3), (10)

Fracture energy per unit area G ′ = Gμ/(�σ 2
d a), (11)

Radiated energy E ′
r = Eμ/(�σ 2

d a3), (12)

where non-dimensional variables are denoted by a prime. The phys-
ical variables include the source radius a, the dynamic stress drop
�σ d, the S-wave speed β and the shear modulus μ. We assume that
the Poisson’s ratio is 0.25 so that α = √

3β. We report the results

in the cylindrical coordinate system used in Madariaga (1976) to
facilitate the comparison of our results (Fig. 1a).

The solution of the 3-D problem formulated is similar to that of
the simplified 2-D problem in Madariaga (1976) where a circular
symmetry of the source is assumed. Fig. 2 shows a source model
with the rate of frictional weakening A′

w = 42 and rupture speed
Vr = 0.9β. The final slip is greatest at the centre of the fault and
monotonically decreases towards the edge of the source (Figs 2a and
c). The final shear stress within the source is non-uniform (Figs 2b
and d) and is different from the dynamic stress τ d due to stress
overshoot; the same feature was reported in Madariaga (1976). At
the centre of the fault, the stress drop is about 2.5 times larger
than the dynamic stress drop �σ d although its contribution to the
spatially averaged stress drop over the source is relatively small.

Despite the similarities mentioned above, there are notable dif-
ferences. Due to the finite cohesive-zone size, the resulting fracture
energy is non-zero and increases with distance from the hypocen-
tre over the source area (Fig. 2e). The stopping behaviour of the
rupture is more complex than in the Madariaga model and is differ-
ent along the Modes-II and III directions (Figs 2c–h). The healing
waves propagate inwards from the edge of the fault at the P-wave
speed α in the Mode-II direction and at ≈0.9α along the Mode-III
direction, respectively. Yet the eventual slip arrest occurs sooner
along the Mode-III direction (Figs 2f–h). This complex arrest leads
to slightly different final slip and stress-drop distributions along
the Modes-II and III directions (Figs 2a and b), which breaks the
circular symmetry in the solution of the problem.

We find a similar degree of stress overshoot in models with a
different cohesive-zone size and without the cohesive zone (or in-
stantaneous strength drop) discussed in Section 4. Hence the large
stress overshoot is not caused by the difference in fracture energy
along the Modes-II and III directions. Indeed, the healing behaviour
is qualitatively similar to that of modelled spontaneous rupture on
a circular fault (Madariaga et al. 1998) where the fracture energy is
assumed to be the same in the Modes-II and III directions.

3 FA R - F I E L D B O DY WAV E R A D I AT I O N S
A N D S P E C T R A

While far-field synthetic seismograms can be computed within the
same numerical simulation used to generate the source model, that
would require significantly more computational time and memory as
the domain needs to be much larger than the source dimension. Since
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Seismic source spectra 1005

Figure 2. Characteristics of a source model with the rate of frictional weakening A′
w = 42 and the rupture speed Vr/β = 0.9. (a) Final slip distribution and

(b) the corresponding stress-change distribution on the fault. (c–f) The profiles of slip S′, stress change �σ ′ and fracture energy G′ along Mode-II (solid) and
Mode-III directions (dashed). (f–h) The snapshots of slip rates V′ during the ‘healing’ stage of the slip. Triangles show the arrivals of stopping phases in the
Mode-II direction. Slip along the Mode-III direction heals sooner than that of the Mode-II direction.

we are only interested in the far-field response of a source model
for a simple Earth structure, we use the representation theorem of
Aki & Richards (2002) instead.

Based on the source-time histories of the source model described
in the previous section, we compute far-field body wave displace-
ment over the focal sphere for a homogeneous elastic whole space.
Far-field body wave displacement radiated by a shear dislocation at
an individual fault patch can be expressed as

u(x, t) = 1

4πρα3
Ap 1

	
Ṁo

(
t − 	

α

)
+ 1

4πρβ3
As 1

	
Ṁo

(
t − 	

β

)
,

(13)

where ρ is the density, Ṁo is the moment rate, 	 is the distance from
the dislocation source to a receiver and Ap and As are radiation
patterns of far-field P and S waves, respectively (eq. 4.32 of Aki &
Richards 2002). We then sum u(x, t) at a receiver for contributions
from all the source gridpoints to account for the finiteness of the

simulated source. As a test of both the numerical solution and
the representation theorem approach, we have verified that both
produce the same seismograms at close distances to the source (in
this case we retained the near-field terms in Aki & Richards 2002).
To focus only on source properties, we assume no attenuation or
scattering in computing our synthetic seismograms. Of course, real
data would need to be corrected for these effects before they could
be used to infer source properties.

The corresponding spectrum is obtained by taking the Fourier
transform of the magnitude of the far-field displacement |u(x, t)|
at each receiver. The corner frequency and spectral fall-off rate are
estimated using common procedures in observational work. We fit
the Brune-type spectral function (Brune 1970) given by

u( f ) = 
0

1 + ( f/ fc)n
(14)
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1006 Y. Kaneko and P. M. Shearer

Figure 3. The magnitude of P and S far-field displacement radiated by the source model shown in Fig. 2 and the corresponding spectra at take-off angles
θ = 0.5◦, 15◦, 45.5◦, 89.5◦. Dashed lines show the best-fitting model of eq. (14) with fall-off rate n, root-mean-square error (rms), and corner frequency fc
indicated by the squares.

to an individual spectrum, where 
0 is the long-period spectral
level, which is proportional to the seismic moment, fc is the cor-
ner frequency, and n is the spectral fall-off rate. We obtain fc and
n from a least-squares fit of the spectrum with function (14) for
0.05fc � f � 10fc using a grid-search method. We weight the fit
inversely with frequency so that all parts of the spectrum seen
in a log–log plot contribute equally (this generally improves the
fit to the low-frequency part of the spectrum, which is defined
by relatively few points). A similar frequency range was used in
Madariaga (1976), where fc was determined from the intersection
of the constant low-frequency asymptote and a straight line fitted to
the intermediate frequency region.

Fig. 3 shows the magnitude of the far-field body wave displace-
ment and their spectra at different take-off angles θ . Both corner
frequencies and spectral fall-off rate depend on θ (Fig. 3). The

long-period or low-frequency region is controlled by the seismic
moment, whereas the intermediate frequency region is controlled
by the width of the pulse and by the size of the fault. The corner
frequencies in Fig. 3 are larger or smaller depending on the width
of the displacement pulse. For θ � 30◦, the corner frequencies are
generally smaller due to the directivity effect; the difference be-
tween wave arrivals from the near-side and far-side of the fault
is larger, resulting in a longer pulse duration and smaller corner
frequency (Fig. 3). These features are qualitatively consistent with
those of Madariaga (1976). Note that some of the spectra shown
in Fig. 3 are not well fit by the spectral function (14), and we will
discuss applications of a more general spectral function introduced
by Boatwright (1980) in Section 5.

The corner frequencies of displacement spectra at take-off angles
sampled every 5◦ over the focal sphere are shown in Fig. 4(a).
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Seismic source spectra 1007

Figure 4. Variations of P and S corner frequencies over the focal sphere. (a) Corner frequencies of displacement spectra at every 5◦ on the focal sphere are
plotted as a function of the take-off angle θ for the source model shown in Fig. 2. The average values over the focal sphere for the rupture speed Vr/β = 0.9
are indicated. (b) This figure adapted from fig. 10 of Madariaga (1976).

Generally, the corner frequency of the P wave is larger than that of
the S wave because of the shorter duration of the P displacement
pulses. For θ � 30◦, the variation is gradual and both the P and
S corner frequencies decrease with θ . Although the pattern of the
corner-frequency variation is similar to that in the Madariaga model
(Fig. 4b), the amplitude of the variation is much larger in the model
considered in this study (Fig. 4a). In addition, both P and S corner
frequencies for a given take-off angle show some scatter and weakly
depend on the angle φ shown in Fig. 1(a). This is due to the lack
of perfect circular symmetry in the source model described in the
previous section.

Since the corner frequency is a function of the take-off angle, we
compute the average f̄ c over the focal sphere. For the model shown
in Fig. 4(a), the spherical averages of the P and S corner frequencies
are 0.38β/a and 0.26β/a, respectively, which are larger than those in
Madariaga (1976). The ratio of the P-to-S corner frequencies is 1.5,
consistent with that of the Madariaga model. It is generally agreed
that P corner frequency is larger than the S corner frequency for
many observed earthquakes (e.g. Molnar et al. 1973; Abercrombie
1995).

There is some potential bias in fitting function (14) to the com-
puted spectra. Fig. 5(a) shows spectral fall-off rates as a function
of the take-off angle θ . The spectral fall-off rate also depends on θ

and ranges from 1.5 to 3.3. Both the corner frequencies and spec-
tral fall-off rates show a similar dependence on θ (Figs 4a and
5a). Generally, a larger fall-off rate corresponds to a larger corner
frequency and vice versa, and hence there is a trade-off in these
parameters in the fitting procedure. To make sure that this bias is
not substantial in the estimation of the corner frequencies, we fix
the fall-off rate to be the average value shown in Fig. 5(a) and repeat
the least-squares fit. In this case, the variation of the corner frequen-
cies over the focal sphere becomes smaller than that obtained using
variable fall-off rates, but the spherically averaged values of corner
frequency differ by less than 4 per cent for both P and S waves (com-
pare Figs 4a and 5b). Hence, we conclude that the average values
of corner frequencies are well determined and the uncertainty in

the estimation of the corner-frequency averages is relatively small.
However, because observations are typically available from only a
limited number of seismic stations, more accurate spherical aver-
ages will generally be obtained when a fixed fall-off rate is used in
fitting the spectra, because the scatter in the individual fc values is
reduced.

4 R E L AT I O N B E T W E E N C O R N E R
F R E Q U E N C I E S A N D S O U RC E R A D I U S

4.1 Cohesive-zone model with rupture speed Vr = 0.9β

The source model presented so far assumes the rate of frictional
weakening A′

w = 42. Increasing A′
w generally results in smaller

fracture energy G′, but G′ eventually becomes independent of A′
w

for models with a cohesive-zone size much smaller than the source
dimension. We call this case the ‘small-scale yielding limit’. In this
limit, the spherical average of corner frequencies does not depend
on the rate of frictional weakening (Fig. 6a), and the source-time his-
tories of the models with A′

w = 84 and A′
w = 168 become identical

(Fig. 7a).
The apparent increase in the corner frequencies with the fracture

energy shown in Fig. 6(a) comes from the way the rupture front
advances in the model, where the rupture speed Vr is defined at
the intersection of the weakening rate Aw and τ = τ d and not at the
actual rupture front (Fig. 1b). Because of this formulation, the actual
rupture front is ahead of the location Vrt (Fig. 1b) and encounters
the edge of the circular fault sooner than the time a/Vr. As a result,
the eventual source duration becomes shorter in the model with a
smaller frictional-weakening rate A′

w, or larger fracture energy G′

(Fig. 6a). This is why the models with larger fracture energy lead to
larger corner frequencies (Fig. 6a).

Since corner frequencies for the models with small A′
w depend on

assumptions for the source, we focus our analysis on the small-scale
yielding limit. In this limit, the spherical averages of P and S corner

 at U
niversity of C

alifornia, San D
iego on M

ay 7, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


1008 Y. Kaneko and P. M. Shearer

Figure 5. (a) Variations of P and S spectral fall-off rates over the focal sphere. Fall-off rates of displacement spectra at every 5◦ on the focal sphere are plotted
as a function of the take-off angle θ . (b) Variations of P and S corner frequencies when the fall-off rates for P and S waves are fixed at 2.4 and 1.9, respectively.
Variations of P and S corner frequencies slightly differ from those in Fig. 4(a), suggesting that there is a bias in fitting eq. (14) to the spectra. However, their
average values remain about the same.

Figure 6. (a) Spherical average of corner frequencies for models with different weakening rates A′
w. As A′

w becomes larger, the mean of fracture energy G
over the circular source becomes smaller but eventually becomes independent of A′

w. In this small-scale yielding limit, the averages of corner frequencies differ
from those obtained by Madariaga (1976) by 19 per cent for P waves and 24 per cent for S waves. Squares correspond to spherical average of P and S corner
frequencies for the zero-cohesive-zone case that requires much larger numerical damping. (b) Simulated slip-weakening curves for the cases with A′

w = 168
and the zero-cohesive-zone case. Open circle, square, triangle and star correspond to initial shear stress τ o, shear strength τ p, dynamic shear strength τ d and
final shear stress τ f, respectively.

frequencies f̄ p
c and f̄ s

c are found as

f̄ p
c = k p β

a
= 0.38

β

a
, (15)

f̄ s
c = ks β

a
= 0.26

β

a
(16)

for Vr/β = 0.9 (Fig. 6a). Surprisingly, the corner frequencies are
larger than those in the Madariaga model by 19 per cent for P waves
and 24 per cent for S waves, respectively. The values of k are smaller
than those of Sato & Hirasawa (1973) with k p = 0.42 and k s = 0.29.

This is expected because the source duration of the cohesive-zone
model is longer, due to the spontaneous healing of slip, than that of
Sato & Hirasawa (1973).

To understand the difference of corner frequencies in the
small-scale yielding limit and Madariaga’s model, we also con-
sider a singular crack model where A′

w is infinite and hence the
cohesive-zone size is zero. The stress change at a point on the fault
for this zero-cohesive-zone model is shown in Fig. 6(b). Obviously,
the shear stress at the rupture front is finite and is not well resolved
numerically. In this case, we find that the spectra are contaminated
by numerical noise at high frequencies that hampers the fitting of
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Seismic source spectra 1009

Figure 7. (a) Source slip functions for the cases with A′
w = 168 and A′

w = 84. (b) Source slip functions for the case with A′
w = 168 and the zero-cohesive-zone

case. Larger numerical damping in the zero-cohesive-zone case affects the stopping behaviour of the rupture and hence results in different final slip in parts of
the fault.

Table 1. Dependence of P and S corner frequencies k p and k s on
rupture speed Vr/β for the cohesive-zone model with the small-scale
yielding limit, compared to other published models. The subscripts
Mada, Brune and S&H corresponds to the models of Madariaga (1976),
Brune (1970) and Sato & Hirasawa (1973), respectively.

Vr/β k p k s k p
Mada ks

Mada ks
Brune k p

S&H ks
S&H

Infinite 0.37
0.9 0.38 0.26 0.32 0.21 0.42 0.29
0.8 0.35 0.26 0.39 0.28
0.7 0.32 0.26 0.36 0.27
0.6 0.30 0.25 0.34 0.27
0.5 0.28 0.22 0.31 0.24

function (14). To remedy this, we use 10-times-larger numerical
damping η = �t (Appendix A) in the source model to reduce the
high-frequency noise. We then follow the same procedure described
above to compute the spherical averages of corner frequencies for
this case.

Interestingly, we find that the spherical averages of P and S corner
frequencies in the zero-cohesive-zone case are still larger than the
prediction of the Madariaga model and remain about the same as
those in the small-scale yielding limit (Fig. 6a). Perhaps the corner
frequencies are not much affected by the details of the weaken-
ing process, with its length scale much smaller than the source
dimension. The slight difference in the corner frequencies between
the zero-cohesive-zone case and the small-scale yielding limit is
caused by the larger numerical damping, which affects both high
and low frequencies of the source-time function (Fig. 7b).

4.2 Cohesive-zone models with different rupture speeds

We consider other source models in the small-scale yielding limit
for several subshear rupture speed from 0.5β to 0.9β. The spherical
averages of corner frequencies for the model with different rupture
speeds are shown in Table 1. The value of k generally increases with
the rupture speed because the source duration becomes shorter as
the rupture speed increases, consistent with the predictions of other
models (Sato & Hirasawa 1973; Madariaga 1976). Compared to
the P corner frequencies, the S corner frequencies are less affected
by the rupture speed (Table 1). The dependence of the P and S
corner frequencies on rupture speeds is similar to that of (Sato &

Hirasawa 1973). Note that non-dimensional corner frequencies k do
not depend on the prescribed dynamic stress drop �σ d as long as
the cohesive-zone size in the source model is much smaller than the
source dimension.

5 D I S C U S S I O N

We discuss uncertainties in estimation of stress drops and impli-
cations of the results for stress drops and other source parameters
reported in observational work.

5.1 Comparison of the input and inferred
source parameters

We first verify the computed spectra and the procedure for esti-
mation of the corner frequencies by comparing source parameters
obtained from the input model shown in Fig. 2 and those inferred
from the spherical average of far-field body wave spectra. From the
source spectra, the seismic moment Mo can be estimated by

Mo = 4πρα3	

p
o

U p
for P waves, (17)

Mo = 4πρβ3	

s
o

U s
for S waves, (18)

where U p = 0.42 and U s = 0.59 are the average radiation pattern
terms for P and S waves, respectively, and 
o is the spherical average
of the long-period spectral levels, which can be also estimated from
the area under the far-field displacement pulse in the time domain.
We find that Mo inferred from the far-field displacement in time
domain is well determined and differs from the input source model
by less than 1 per cent (Table 2). However, Mo inferred from the
spectra is overestimated by 10 per cent for P waves and 18 per cent
for S waves (Table 2) because the low-frequency asymptote of the
Brune spectral function used to compute 
o is generally larger than
the actual long-period spectral level (e.g. Fig. 3).

The radiated energy Er of the source model can be computed via
(e.g. Kostrov 1974; Ma & Archuleta 2006)

Er =
∫

�

τ o(ξ ) + τ f (ξ )

2
S(ξ )d� −

∫ ∞

0

∫
�

τ (ξ, t)V (ξ, t)d� dt,

(19)
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Table 2. Comparison between input and recovered source parameters for the source model shown
in Fig. 2.

M ′
o (Mo/�σ da3) E ′

r (Erμ/�σ 2
d a3) E ′

r/M ′
o

Input source model 2.87 0.83 0.29
Inferred from P-wave spectra 3.16 0.72 0.23
Inferred from S-wave spectra 3.39 0.21
Inferred from P-wave displacement 2.89 0.81 0.28
Inferred from S-wave displacement 2.88 0.28

where S is the slip, V is the slip rate and � is the source area. We
estimate the total radiated energy Er from the far-field body waves
using (e.g. Haskell 1964)

Er = E p
r + Es

r

= 2ρ

∫
�

∫ ∞

0

[
α(u̇ p)2 + β(u̇s)2

]
d f d� for freq. domain,

(20)

Er = E p
r + Es

r

= ρ

∫
�

∫ ∞

0

[
α(u̇ p)2 + β(u̇s)2

]
dt d� for time domain, (21)

where u̇ p and u̇s are far-field particle velocities for P and S waves,
respectively, and � is the area over the focal sphere. The estimated
radiated energy from the far-field body wave spectra is 13 per cent
smaller than that of the source model (Table 2). This is because
the upper bound of the frequency range in this study is ∼10fc,
the value typically used in observational work due to frequency-
band limitations of data. When Er is computed from the integral
of the squared velocity in the time domain (eq. 21), the difference
becomes less than 3 per cent (Table 2). Due to the uncertainties in
Mo and Er, the corresponding energy-to-moment ratios in time and
frequency domains differ from that of the input model by up to 3
and 27 per cent, respectively (Table 2).

The ratio of S-to-P radiated energy, Es
r /E p

r , is also an important
parameter for understanding the underlying source processes. For a
point-source model where the P- and S-wave pulses have identical
shapes and hence the same f p

c and f s
c , Es

r /E p
r = 23.4 for a Poisson

solid. From the spectra, we obtain Es
r /E p

r = 19.3 for the model with
the small-scale yielding limit (Table 3). The time-domain method
discussed above leads to a more accurate estimation, and yields
Es

r /E p
r = 21.8 (Table 3). These values are closer to the point-

source model and also agree fairly well with Es
r /E p

r = 24.4 for the
circular-source model of Sato & Hirasawa (1973). Observational
studies associated with shear-dominant earthquakes report a broad
range of Es

r /E p
r ratios ranging from about 5 to 30, with smaller ratios

commonly interpreted as the presence of a tensile component (e.g.
Boatwright & Fletcher 1984; Abercrombie 1995; Prieto et al. 2004;
Kwiatek & Ben-Zion 2013). To estimate Es

r /E p
r , some studies rely

on the theoretical model of Boatwright & Fletcher (1984), which
was derived by assuming that the fall-off rates are identical for P
and S waves

Es
r

E p
r

= 3

2

(
α

β

)5 (
f s
c

f p
c

)3

, (22)

which permits Es
r /E p

r to be estimated from the P-to-S corner fre-
quency ratio f p

c / f s
c . From eq. (22) with f p

c / f s
c = 0.38/0.26 = 1.46,

the model with the small-scale yielding limit predicts that
Es

r /E p
r = 7.6, which is much smaller than the actual Es

r /E p
r = 21.8

measured from the integral of velocity squared (Table 3). The dis-
crepancy arises from the fact that eq. (22) assumes identical P
and S spectral fall-off rates, whereas the fall-off rates in the small-
scale yielding limit are generally smaller for S waves than P waves
(Fig. 5). As a result, Es

r /E p
r based on eq. (22) is substantially under-

estimated. Hence for both the model with the small-scale yielding
limit and Madariaga’s model, Es

r /E p
r cannot be accurately retrieved

from eq. (22).
Next, we compare the static stress drop of the source model

and that inferred from the spectra. The stress drop of the input
source model based on eq. (1) is 1.25�σ d (Table 4). Using kp and
ks obtained from the small-scale yielding limit and assuming the
correct Mo, the inferred stress drops agree with that of the input
model for both P and S waves, as expected. If the Madariaga model
is used for the estimation, the stress drop is overestimated by a
factor of 1.7 for P waves and 1.9 for S waves, respectively (Table 4).
Assuming the correct Er, the corresponding radiation efficiencies
ηrad = 2μER/(�σMo) are well determined from the spectra based
on the k values from the small-scale yielding limit, whereas they are
underestimated by the same factors based on the Madariaga model
(Table 4). This again highlights the importance of the value of k in
the proper estimation of stress drop.

5.2 Implications for stress drop estimates
in observational work

The results presented in this study have important implications
for estimated source parameters of earthquakes. While relative
stress-drop variations found in previous observational work are not
affected by the difference in the assumed value of k, the absolute

Table 3. Comparisons of S-to-P radiated energy ratios for the model with the small-scale yielding
limit (with A′

w = 168 and Vr = 0.9β) and those reported in observational studies.

Es
r /E p

r

Inferred from stacked spectra 19.3
Inferred from the integral of squared velocity 21.8
Inferred from f p

c / f s
c using the theory of Boatwright & Fletcher (1984) 7.6

Observational work of Boatwright & Fletcher (1984) 27.3 ± 3.3
Observational work of Abercrombie (1995) 14.3 (from 4.4 to 46.3)
Observational work of Prieto et al. (2004) 9 ± 1.5
Observational work of Kwiatek & Ben-Zion (2013) 4.8 (from 0.5 to 50)
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Table 4. Comparison between input and recovered stress drop and radiation efficiency for the
source model shown in Fig. 2.

�σ/�σ d Rad. eff. ηeff

Modelled stress drop based on �σ = (7/16)(Mo/a3) 1.25 0.46
Modelled stress drop based on �σ nonuni (eq. 24) 1.23 0.47
Inferred from P spectra using kp from the small-scale yielding limit 1.25 0.46
Inferred from S spectra using ks from the small-scale yielding limit 1.25 0.46
Inferred from P spectra using kp from Madariaga (1976) 2.10 0.28
Inferred from S spectra using ks from Madariaga (1976) 2.38 0.24

Figure 8. Histograms of normalized stress drops for different numbers of random stations based on the corner frequencies shown in Fig. 4(a). The horizontal
axis shows estimated stress drop �σ estimated normalized by the ‘true’ stress drop �σ true obtained from perfect station coverage. The standard deviation (std)
and the number of stations are indicated in each panel.

level of a stress drop based on the model with the small-scale yield-
ing limit is systematically smaller by a factor of 1.7 than that based
on the Madariaga model. For example, with the revised values of k,
stress drop estimates reported in Allmann & Shearer (2009) range
from 0.18 to 30 MPa with the median value of 2.4 MPa. This
implies that less accumulated tectonic stress is released by those
earthquakes than the previous interpretation. In addition, unusually
high-stress-drop earthquakes (�100 MPa) reported in observational
studies may not be actually so large and thus more comparable to
the tectonic overburden pressure.

Stress drop is also used to infer other source parameters, such as
seismological fracture energy. Abercrombie & Rice (2005) found
that the proxy for fracture energy (denoted as G′ in their work)
increases with the slip S, from 103 J m−2 at S = 1 mm to 106–107

J m−2 at S = 1 m. Since G′ = (�σ − 2μEr/Mo)(S/2) and depends
on �σ , which was estimated based on the model of Madariaga
(1976), G′ would be smaller with �σ based on the model with the
small-scale yielding limit.

5.3 Uncertainty in corner-frequency estimation due to
limited station coverage

Stress drop observations typically exhibit large scatter, even in rel-
atively compact regions (e.g. Shearer et al. 2006). A key question
is how much of this scatter is real (i.e. true differences in earth-
quake stress drops) and how much may simply reflect observational
uncertainties, such as inaccurate corrections for attenuation. An un-
derappreciated aspect of the Madariaga model, confirmed by our
own work, is the large dependence of fc on take-off angle relative
to the source (Fig. 4a). Thus, measurements from a small number
of seismic stations are unlikely to produce unbiased estimates of
spherically averaged fc, even if we assume attenuation corrections
are perfect. A factor of two difference in f̄ c will produce a factor
of eight difference in stress drop. As an example, synthetic tests of
random take-off angles show that the standard error in stress drop
is 33 and 120 per cent for single station P- and S-wave estimates,
respectively, which is reduced to 19 and 53 per cent for five-station
estimates, and 14 and 35 per cent for 10-station estimates (Fig. 8).
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Figure 9. Histograms of normalized stress drops for different numbers of random stations based on the corner frequencies for the fixed fall-off rates shown in
Fig. 5(b). The horizontal axis shows estimated stress drop �σ estimated normalized by the true stress drop �σ true, which is the stress drop obtained from perfect
station coverage. The standard deviation (std) and the number of stations are indicated in each panel.

These should be taken as lower bounds because it is unlikely that
the true station distribution will mimic random take-off angles.

Allowing the fall-off rate to vary produces the best fit to the spec-
tra and more accurate fc estimates for individual spectra. However,
this approach yields a greater dependence of fc on take-off angle
(compare Figs 4a and 5b) and will require more stations to get an
unbiased spherical average. As discussed above, the undersampling
errors can be reduced if a fixed fall-off rate is used in fitting for
fc. Fig. 9 shows that the standard errors in stress drop for a fixed
fall-off rate are systematically smaller than those shown in Fig. 8.
Hence, although fixing the fall-off rate worsens the fit to individual
spectra, it reduces the dependence of fc on take-off angle and the
number of stations required to get an unbiased spherical average.

5.4 On fitting the spectral function: weighted versus
unweighted fit

When fitting the spectral function (eq. 14) to the computed spec-
tra, we weight the fit inversely with frequency, which makes all
parts of the spectrum in a log–log plot contribute equally. Since
the low-frequency part of the spectrum is defined by relatively few
points, the weighting generally improves the fit to the low-frequency
part. When the fit is done without the weight, the estimated corner
frequencies are generally smaller than those with the weight, and
the corresponding spherical average is smaller with k p = 0.33 and
k s = 0.23 for the source model shown in Fig. 2. However, the un-
weighted fits are visually worse. Hence, we use weighted fit for all
the cases considered in this study. Note that many observational
studies (e.g. Shearer et al. 2006) also use this inverse weighting in
fitting spectral functions to data.

5.5 On averaging of corner frequencies from individual
spectra versus from stacked spectra

Uncertainty in stress-drop estimation also includes how the average
of corner frequencies f̄ c is calculated. We follow the approach of
Madariaga (1976) where f̄ c is the average of all the fc estimated
for individual spectra. However, often observational studies (e.g.
Shearer et al. 2006) use stacked log spectra in fitting a spectral
function (e.g. eq. 14) because individual spectra tend to be irregular
in shape and difficult to fit robustly. Fig. 10 shows log spectra, their
average (stack) and the corresponding estimated corner frequencies
k for the source model shown in Fig. 2. The values of k p and k s differ
from those estimated from the spherical average by 2 and 7 per cent
for P and S waves, respectively. Hence, corner frequencies estimated
by stacked spectra generally agree reasonably well with those of the
spherical average.

5.6 Alternate spectral fitting functions and the meaning
of fc

In this study, we estimate corner frequencies by fitting a Brune-type
spectral function (14) to the computed spectra. A more general form
of the spectral function has been proposed by Boatwright (1980):

u( f ) = 
0

[1 + ( f/ fc)γ n]1/γ
, (23)

where γ is a constant that controls the sharpness of the corners of a
spectrum. With γ = 1, eqs (14) and (23) are identical. Boatwright
(1980) found that γ = 2 provides a better fit to the sharper corners
observed in the data studied.
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Figure 10. Individual spectra (black lines) at different take-off angles for
the source model shown in Fig. 2. A fraction of all the spectra are plotted
for (a) P waves and (b) S waves. The solid red line shows the average of the
log spectra, and the corresponding best-fitting spectral function (eq. 14) is
shown by the dashed red line. The estimated corner frequencies, k p and k s,
and fall-off rates n are indicated.

To evaluate uncertainties in estimated stress drops for applica-
tions of different spectral functions, we fit eq. (23) to the com-
puted spectra shown in Fig. 3. Compared to the spectral function of
Brune (1970), applications of eq. (23) generally lead to better fits to
the spectra, that is, the root-mean-square errors are systematically
smaller (Fig. 11a). The corner frequencies still show a large depen-
dence on take-off angles θ but their spherical averages are smaller,
with k p = 0.34 and k p = 0.23 (Fig. 11b). This means that larger
γ allows for the fit to the spectra with smaller corner frequencies.
Hence even with the synthetic model, the estimation of corner fre-
quencies and the spherical average depend on the assumed spectral
function. Note that the spectral function of Brune (1970) has been
used more often in observational studies where the spectra generally
are rather noisy and difficult to fit with too many parameters (e.g.
Prieto et al. 2004; Shearer et al. 2006). More stable results for fc are
often obtained by reducing the number of parameters (e.g. fixing
the fall-off rate), as discussed above.

This discussion highlights the fact that fc is not a precisely defined
parameter. Unlike moment (Mo) and radiated seismic energy (Er),
corner frequency is not directly related to a physical property of the
source. fc is generally defined as the intersection of lines in log–

log displacement spectral plots, connecting the flat low-frequency
part of the spectrum and a power-law fall-off at high frequencies.
However, observed source spectra generally appear more compli-
cated than this simple model, leading to considerable ambiguity in
how to measure fc. Even with the synthetic data for a simplified
fault geometry presented here, the value of fc for a given spectrum
will vary depending upon the selected bandwidth, the choice of
fitting function, and the norm or weighting used for the fit. Given
these variations, it is difficult to define the ‘best’ way to measure fc.
However, it is probably more important for seismologists to agree
on a standard way to compute corner frequency, at least from the
point of view of facilitating comparisons among different studies.
Thus, we have emphasized the Brune spectral function here, not
because it necessarily provides the best fit, but because it has been
the most widely used and thus provides a logical reference fc value.
Of course, whatever method is used to compute fc, it is important
to compute stress drop and other parameters using k values that are
appropriate for that method.

5.7 On estimation of stress drop using models
with stress overshoot

Strictly speaking, one cannot simply use Eshelby’s analytical so-
lution (eq. 1) for both the Madariaga and cohesive-zone models
because they have ‘spatially non-uniform’ stress drop. Eq. (1) is
valid only for ‘spatially uniform’ stress drop. One can set up a
cohesive-zone model that does not allow for stress overshoot by
enforcing the final shear stress to be equal to the dynamic shear
strength (τ f = τ d) within the source area. In this case, the final slip
and stress drop are consistent with Eshelby’s analytical solution
(eq. 1). However, because of the fixed shear stress on the fault, the
sign of the slip reverses (i.e. the fault slips backwards) during the
healing phase of the slip. This is inconsistent with the assumption
of the source because the backward slip should only occur when
the shear stress becomes more negative than the shear strength (i.e.
τ < −τ st).

To assess the difference arising from the use of eq. (1) for a spatial
average of the non-uniform stress drop �σ nonuni, we compute the
spatial average given by (Madariaga 1979; Noda et al. 2013)

�σ nonuni =
∫

�
�σ (ξ )w(ξ ) d�∫

�
w(ξ ) d�

, (24)

where �σ (ξ ) is a stress-drop distribution over the source area, and
w(r) = (24/7π )r(1 − r2/a2)1/2 is a weight function obtained from a
slip distribution for the equivalent circular fault with uniform stress
drop. The resulting stress drop for the source model shown in Fig. 2
is �σ nonuni = 1.23�σd, which differs from the stress drop based on
eq. (1) by less than 2 per cent (Table 4). Hence, for this relatively
simple source model, the use of eq. (1) is adequate.

6 C O N C LU S I O N S

Using simulations of dynamic rupture and the representation theo-
rem of Aki & Richards (2002), we have analysed the behaviour of
source spectra derived from the cohesive-zone model of a radially
expanding rupture with velocity 0.9β on a circular fault. We have
found similarities and differences in the behaviour of the source
spectra compared to that of Madariaga (1976). The most important
finding in this study is that, in the small-scale yielding limit where
the cohesive-zone size is much smaller than the source dimension,
P- and S-wave corner frequencies of displacement spectra are about
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Figure 11. (a) Fitting the spectral function of Boatwright (1980) (eq. 23) to the P- and S-wave spectra shown in Fig. 3 for take-off angles θ = 45.5◦ and 89.5◦.
Dashed lines show the best-fitting spectral functions with fall-off rate n, parameter γ , root-mean-square error (rms) and corner frequency fc indicated by the
squares. (b) Variations of P and S corner frequencies over the focal sphere estimated by the spectral function (eq. 23). Corner frequencies of displacement
spectra at every 5◦ on the focal sphere are plotted as a function of θ for the source model shown in Fig. 2. The average values over the focal sphere for the
rupture speed Vr/β = 0.9 are indicated.

20 per cent larger than those predicted by Madariaga (1976). In this
case, an application of the Madariaga model overestimates stress
drops by a factor of 1.7. As a result, the seismic radiation efficiency
is underestimated by the same factor. The ratio of the P-to-S corner
frequencies is found to be 1.5, consistent with that of Madariaga
(1976). However, the S-to-P energy ratio is about 22, much higher
than predicted by simplified models with identical high-frequency
P and S fall-off rates. The spherical average of corner frequencies
over the focal sphere is larger for source models with a larger rup-
ture speed due to a shorter source duration. The large dependence
of corner frequency on take-off angle relative to the source suggests
that measurements from a small number of seismic stations are
unlikely to produce unbiased estimates of spherically averaged cor-
ner frequency. While the relative variations of inferred stress drops
based on the Madariaga model reported in observational work are
not affected by the result of this study, the absolute levels of the
stress drops were likely overestimated.
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A P P E N D I X A : N U M E R I C A L DA M P I N G :
K E LV I N – V O I G H T V I S C O S I T Y

The Kelvin–Voight viscosity we use is artificial in the sense that it
is part of the numerical procedure for solving the perfectly elastic
problem, and is not intended to represent physical damping. The
purpose of the Kelvin–Voigt viscosity is to damp spurious oscilla-
tions generated by the fault slip at frequencies that are too high to be
resolved by the mesh (e.g. Day et al. 2005). The viscosity η depends
on the size of the elements on the fault and must be a small fraction
of the critical time step in an elastic medium for the average linear
size of the elements on the fault plane (e.g. Ampuero 2002; Kaneko
et al. 2008). Unless noted otherwise, we set η = 0.1�t, where �t is
the time step used in a simulation. Values substantially larger than
this value visibly degrade the sharpness with which shear stress is
resolved at the rupture front.
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