
Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE
10.1002/2014JB011642

Key Points:
• Relations between source dimensions

and corner frequencies
are established

• Stress drop estimates are affected by
differences in source characteristics

• A small number of receivers produce
biased estimates of stress drops
and energy

Correspondence to:
Y. Kaneko,
y.kaneko@gns.cri.nz

Citation:
Kaneko, Y., and P. M. Shearer (2015),
Variability of seismic source spectra,
estimated stress drop, and radiated
energy, derived from cohesive-zone
models of symmetrical and
asymmetrical circular and elliptical
ruptures, J. Geophys. Res. Solid Earth,
120, doi:10.1002/2014JB011642.

Received 25 SEP 2014

Accepted 7 DEC 2014

Accepted article online 11 DEC 2014

Variability of seismic source spectra, estimated stress drop,
and radiated energy, derived from cohesive-zone models
of symmetrical and asymmetrical circular
and elliptical ruptures
Y. Kaneko1 and P. M. Shearer2

1GNS Science, Lower Hutt, New Zealand, 2Institute of Geophysics and Planetary Physics, Scripps Institution of
Oceanography, University of California, San Diego, La Jolla, California, USA

Abstract Large variability of earthquake stress drops and scaled energy has been commonly reported
in the literature, but it is difficult to assess how much of this variability is caused by underlying physical
source processes rather than simply observational uncertainties. Here we examine a variety of dynamically
realistic rupture scenarios for circular and elliptical faults and investigate to what extent the variability in
seismically estimated stress drops and scaled energy comes from differences in source geometry, rupture
directivity, and rupture speeds. We numerically simulate earthquake source scenarios using a cohesive-zone
model with the small-scale yielding limit, where the solution approaches a singular crack model with
spontaneous healing of slip. Compared to symmetrical circular source models, asymmetrical models result
in larger variability of estimated corner frequencies and scaled energy over the focal sphere. The general
behavior of the spherical averages of corner frequencies and scaled energy in the subshear regime extends
to the supershear regime, although shear Mach waves generated by the propagation of supershear rupture
lead to much higher corner frequency and scaled energy estimates locally. Our results suggest that at least
a factor of 2 difference in the spherical average of corner frequencies is expected in observational studies
simply from variability in source characteristics almost independent of the actual stress drops, translating
into a factor of 8 difference in estimated stress drops. Furthermore, radiation efficiency estimates
derived from observed seismic spectra should not be directly interpreted as describing rupture properties
unless there are independent constraints on rupture speed and geometry.

1. Introduction

Understanding the mechanisms responsible for the observed complexities of earthquake source processes
is an important, yet difficult task. One way to quantify earthquake source complexity is to estimate stress
drop and/or scaled energy (i.e., the ratio of radiated energy to the seismic moment) and analyze their scaling
relations. Observational studies suggest that the mean of stress drops for crustal earthquakes is in the range
of 1 to 10 MPa and is independent of their magnitude [e.g., Kanamori and Anderson, 1975]. Yet stress drops
for similar size earthquakes exhibit large scatter, even in relatively compact regions [e.g., Abercrombie, 1995;
Shearer et al., 2006; Allmann and Shearer, 2007]. Similarly, estimates of scaled energy have large scatter, and
as a result, the relationship between scaled energy and seismic moment remains a subject of active debate
[e.g., Abercrombie, 1995; Mayeda and Walter, 1996; Ide et al., 2003; Prieto et al., 2004; Walter et al., 2006; Baltay
et al., 2011].

It is generally difficult to assess how much of the variability in inferred stress drops and scaled energy is
caused by underlying physical source processes or may simply reflect observational uncertainties, such
as inaccurate corrections for attenuation and measurement bias due to a limited number of seismic
observations. Large variability in stress drops and scaled energy leads to large uncertainties in ground
motion prediction, hampering accurate hazard estimation [e.g., Cotton et al., 2013]. In this work, we
investigate the origin of variability in inferred stress drops and scaled energy using relatively simple but
realistic models of earthquake rupture.

Stress drop is proportional to the ratio of total slip to rupture size. From the classical work of Eshelby [1957],
stress drop Δ𝜎 for an elliptical crack in a homogeneous elastic medium can be expressed as

Δ𝜎 = C(a, b, 𝜈)
M0

bS
, (1)
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where C(a, b, 𝜈) is a geometrical parameter that depends on the major and minor axes a and b of the ellipse
[Madariaga, 1977] and Poisson’s ratio 𝜈, M0 is the seismic moment, and S is the source area (Appendix A).
In the special case of a circular source within a Poissonian solid (i.e., 𝜈 = 0.25), the above expression
simplifies to

Δ𝜎 = 7
16

M0

a3
with a = b . (2)

Since the physical size of the source is typically inaccessible to direct observation, Δ𝜎 is commonly
estimated from far-field body wave spectra using measurements of corner frequencies fc and a theoretical
model of rupture behavior. By assuming a theoretical rupture model, the source radius can be related to
the spherical average of corner frequencies f̄c of body wave seismic spectra through [e.g., Brune, 1970;
Madariaga, 1976; Kaneko and Shearer, 2014]

f̄c = k
𝛽

a
, (3)

where 𝛽 is the shear wave speed near the source and k is a constant that relates to the spherical average of
corner frequencies for a specific theoretical model. From equations (2) and (3), the stress drop Δ𝜎 can be
estimated from far-field body wave spectra using spherically averaged measurements of corner frequency
f̄c, together with seismic moment M0 determined from the low-frequency part of the spectra:

Δ𝜎 = 7
16

(
f̄c

k𝛽

)3

M0 . (4)

Clearly, any uncertainty in f̄c, k, or 𝛽 is cubed when computing stress drop.

The value of k in equation (3) depends on which theoretical relationship is used to relate corner frequency
and source radius. Many investigators [e.g., Hanks and Thatcher, 1972; Archuleta et al., 1982; Ide et al., 2003;
Baltay et al., 2011; Cotton et al., 2013; Oth and Kaiser, 2014] used the model of Brune [1970], who assumed a
simple but somewhat ad hoc kinematic model for a circular fault and obtained k = 0.37 for S waves. Others
[e.g., Prejean and Ellsworth, 2002; Stork and Ito, 2004; Imanishi and Ellsworth, 2006] applied the analytical
model of Sato and Hirasawa [1973] in which the rupture initiates at a point, spreads radially with a constant
rupture speed, and then stops abruptly at the source radius. This model assumes that the static solution of
Eshelby [1957] holds at every successive instant of rupture formation under uniform stress, in which case
k depends on the rupture speed Vr with kp = 0.42 for P waves and ks = 0.29 for S waves for Vr = 0.9𝛽 . An
unphysical feature of the model of Sato and Hirasawa [1973] is that particle motion ceases instantly at the
same time, everywhere over the fault plane.

The model of Madariaga [1976] has been widely used [e.g., Abercrombie, 1995; Prieto et al., 2004;
Abercrombie, 2005; Shearer et al., 2006; Allmann and Shearer, 2007, 2009; Yang et al., 2009; Yamada et al.,
2010]. Madariaga [1976] performed finite-difference calculations for a singular crack radially expanding at
a constant speed and found that f̄c = k𝛽∕a, where f̄c is the spherically averaged corner frequency, 𝛽 is the
shear wave speed, a is the radius of the circular source, and k = 0.32 and 0.21 for P and S waves, respectively,
assuming the rupture speed Vr = 0.9𝛽 . Since stress in the Madariaga model is singular at the rupture
front, the finite mesh size and smoothing procedures affect the resulting corner frequencies. To remedy this
problem, Kaneko and Shearer [2014] considered cohesive-zone models of a circular fault with the small-scale
yielding limit and numerically found that the values of k for the singular crack model with spontaneous
healing of slip are actually larger than the prediction of Madariaga [1976], with k = 0.38 for P waves and
k = 0.26 for S waves for the rupture speed Vr = 0.9𝛽 .

A key issue we address here is the validity of the standard assumption of a symmetrical circular source
applied to real earthquakes. Observational studies hint that most ruptures of large crustal events are pre-
dominantly unilateral [e.g., Henry and Das, 2001; McGuire et al., 2002]. Since source geometry, directivity, and
rupture speeds for small earthquakes are generally harder to constrain, stress drop estimation often relies
on one of the above mentioned theoretical models with the rupture expanding radially at a constant speed
until it encounters the periphery of the circular source. Such models are clearly an oversimplification of
earthquake rupture processes in nature. Hence, we expect that some degree of variability in inferred stress
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Figure 1. Source scenarios considered in this study. (a) Symmetrical
circular source where the rupture nucleates at the center, grows
circularly with a constant rupture speed, and stops at the edge. Contours
correspond to rupture arrival times on the fault. (b) Asymmetrical circular
source where the rupture nucleates at one end and propagates mostly
unilaterally at a constant rupture speed and stops at the edge of the
circular fault. (c) Symmetrical elliptical source where the rupture grows at
different speeds along the x and y directions. (d) Asymmetrical elliptical
source where the rupture nucleates at one end and propagates mostly
unilaterally at a constant rupture speed and stops at the edge of the
elliptical fault.

drops comes from variability in source
geometry, rupture directivity, and
rupture speeds that are independent of
the actual stress drop.

In the classical circular rupture
models, the center of the expanding
circular front coincides with the
center of the fault, which is referred to
as an “symmetrical” model as opposed
to an “asymmetrical” model where the
above two points are different [Dong
and Papageorgiou, 2003]. Boatwright
[1981] numerically analyzed far-field
radiation of asymmetrical models
and found stronger directivity effects
compared to that of the symmetrical
model. Dong and Papageorgiou
[2002a, 2003] extended the results of
Burridge and Willis [1969] and derived
closed-form analytical solutions of the
far-field radiation for asymmetrical
and elliptical ruptures propagating
at subshear speeds, generalizing the
circular fault model of Sato and
Hirasawa [1973].

In this work, we attempt to quantify
to what extent the variability in
estimated stress drops and scaled
energy may arise from differences in

source geometry, rupture directivity, and rupture speeds. We study far-field body wave spectra derived
from source models with different fault geometries and rupture behavior. We consider four general source
scenarios (Figure 1): (i) symmetrical circular rupture where the center of the expanding front coincides with
the center of the circular fault, (ii) asymmetrical circular rupture where the hypocenter is located on the
periphery of a circular fault, (iii) symmetrical elliptical rupture where the rupture propagates at different
speeds in different directions, and (iv) asymmetrical elliptical rupture. A primary motivation for considering
elliptical rupture is to extend the analysis of Kaneko and Shearer [2014] to supershear rupture, where the
rupture speed can exceed the local S wave speed along the Mode II direction, but not along the Mode III
direction [e.g., Burridge, 1973; Andrews, 1976].

To obtain the corner frequencies of radiated body waves for earthquakes with various fault geometry, we
use dynamic models of expanding rupture where the rupture propagates over the prescribed source area
at a constant speed and the slip spontaneously arrests due to the arrivals of stopping phases. We consider
simple classes of circular and elliptical rupture models that are physically realizable, i.e., have no stress
singularities, and that are generated by simulations with a proper numerical resolution. For each rupture
scenario, we analyze the behavior of seismic body wave spectra, the relation between the corner frequency
and the source radius, the variations of estimated corner frequencies and scaled energy over the focal
sphere, and the dependence of these parameters on the rupture speeds. We discuss uncertainties in
estimation of stress drop and scaled energy and the implications of our results for the large variability
reported in previous observational work (section 8).

2. Cohesive-Zone Model of an Elliptical Fault

We consider circular and elliptical faults embedded in an infinite homogeneous, isotropic elastic medium
(Figure 2a). The degree of ellipticity of the elliptical source is quantified by its “eccentricity” 𝜀 with major and
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Figure 2. Model geometry and fault constitutive response. (a) A circular fault with radius a or an elliptical fault with
major axis a and minor axis b embedded in an infinite medium. Prestress 𝜏o is uniform over the fault patch and zero
outside. (b) Fracture criterion used in this study and that for the singular crack assumed in Madariaga [1976]. In our study,
fault strength increases linearly from |r| = Vrt (as shown by a gray line) within the cohesive zone. Slip begins when the
shear stress 𝜏 on the fault reaches the shear strength 𝜏p.

minor axes a and b:

𝜀 =
√

1 −
(b

a

)2

. (5)

For 𝜀 = 0, we obtain a circular fault, whereas an elongated fault can be obtained by making 0 < 𝜀 < 1.

To create a source model closely related to singular crack models of expanding rupture [e.g., Sato and
Hirasawa, 1973; Madariaga, 1976; Dong and Papageorgiou, 2003], we follow the procedure used in the earlier
studies [Andrews, 1985; Dunham and Bhat, 2008] in which the shear strength 𝜏st of the fault weakens linearly
at a rate Aw with distance within the cohesive zone:

𝜏st = max{𝜏d, 𝜏d + Aw(|r| − Vrt)} , (6)

where 𝜏d is dynamic shear strength, |r| =
√

x2 + y2, and Vr is the rupture speed (Figure 2b). For an
expanding elliptical rupture, the rupture speed Vr in equation (6) may be expressed as

Vr = Vx Vy

(
x2 + y2

V2
y x2 + V2

x y2

)1∕2

, (7)

where Vx and Vy are the rupture speeds along the major and minor axes, respectively. The fault stressed
initially at 𝜏o does not move until the shear stress reaches the fault strength 𝜏p, which is not specified a
priori, but depends on the dynamic strength 𝜏d and the weakening rate Aw (Figure 2b). The shear stress is
always equal to the shear strength during the sliding but can be smaller than the shear strength (i.e., stress
overshoot) after the sliding terminates.

In this model, the rupture nucleates at a point within the source area S, and the rupture front expands
radially by maintaining its elliptical shape (i.e., constant 𝜀). Fault growth stops instantaneously as the rupture
runs into the zone of zero shear stress outside the source region. The level of shear stress outside of the
source region can be arbitrary as long as it is much smaller than the dynamic strength 𝜏d. In the limit where
the weakening rate Aw becomes infinitely large (i.e., the small-scale yielding limit), the model approaches a
singular crack model (Figure 2b). Note that equation (6) is different from the commonly used slip-weakening
friction law, where the resulting rupture becomes spontaneous, leading to a more complex source model
with set of complicated waveforms. For simplicity, we fix the rupture speeds Vx and Vy as constant in time,
but the model is still dynamic in the sense that we solve for the fault motion given the rupture speeds and
prescribed dynamic stress drop Δ𝜎d (sometimes called effective stress).

We solve the elastodynamic equation coupled with the fracture criterion (equation (6)) using a spectral
element method [Komatitsch and Vilotte, 1998; Kaneko et al., 2008, 2011]. We choose a large enough
computational domain such that waves reflected by the domain boundaries do not propagate back to the
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source area. For simplicity, only the x components of slip and shear traction are solved numerically; there
is no rake rotation as the elliptical rupture front advances. To produce well-resolved numerical results,
we ensure that there are at least 7 to 10 computational node points within a cohesive zone. The spectral
element model incorporates artificial viscosity of the Kelvin-Voight form to suppress spurious oscillations
generated by the fault slip at frequencies that are too high to be resolved by the mesh (Appendix B). The
dynamic rupture code has been verified through the Southern California Earthquake Center Dynamic
Rupture Code Verification Exercise [Harris et al., 2009, 2011].

A dimensional analysis of the problem allows for the representation of solutions in terms of nondimensional
variables. We choose the following nondimensionalizations similar to those in Kaneko and Shearer [2014]:

Length r′ = r∕
√

ab (8)

Time t′ = t𝛽∕
√

ab (9)

Stress 𝜎′
ij = 𝜎ij∕Δ𝜎d (10)

Displacement u′
i = ui𝜇∕(Δ𝜎d

√
ab) (11)

Weakening rate A′
w = Aw

√
ab∕Δ𝜎d (12)

Seismic moment M′
0 = M0∕(Δ𝜎d(ab)3∕2) (13)

Fracture energy per unit area G′ = G𝜇∕(Δ𝜎2
d

√
ab) (14)

Radiated energy E′
r = E𝜇∕(Δ𝜎2

d(ab)3∕2) , (15)

where nondimensional variables are denoted by a prime. The physical variables include the major and minor
axes a and b of an elliptical source, the dynamic stress drop Δ𝜎d, the S wave speed 𝛽 , and the shear modulus
𝜇. We assume that the Poisson’s ratio is 0.25 such that 𝛼 =

√
3𝛽 .

3. Symmetrical Circular Rupture

In this section, we describe the procedure for computing the spherical average of normalized corner
frequencies k in equation (3) for each source scenario. We then summarize the characteristics of the
symmetrical circular source already discussed in Kaneko and Shearer [2014] to facilitate comparisons with
more complex source scenarios considered in this work. For each model with a given rupture speed, we
report k values, stress drop, scaled energy, radiation efficiency, and the S-to-P radiated energy ratio, most of
which were not reported in Kaneko and Shearer [2014].

We simulate an earthquake source using a cohesive-zone model with the small-scale yielding limit, where
the cohesive-zone size becomes much smaller than the source dimension and the solution approaches
a singular crack model with spontaneous healing of slip (Figure 3). In this limit, the resulting corner
frequencies are independent of the rate of frictional weakening A′

w and the dynamic stress drop Δ𝜎d, and
hence, for a prescribed rupture speed, we can obtain unique values of P and S wave normalized corner
frequencies kp and ks, respectively [Kaneko and Shearer, 2014].

Using the source time histories of the rupture model, we compute far-field body wave displacement over
the focal sphere for a homogeneous elastic whole space. Far-field body wave displacement radiated by a
shear dislocation at an individual fault patch can be expressed as

u(x, t) = 1
4𝜋𝜌𝛼3

Ap 1
R

Ṁo

(
t − R

𝛼

)
+ 1

4𝜋𝜌𝛽3
As 1

R
Ṁo

(
t − R

𝛽

)
, (16)

where 𝜌 is the density, Ṁo is the moment rate, R is the distance from the dislocation source to a receiver,
and Ap and As are radiation pattern terms for far-field P and S waves, respectively [Aki and Richards, 2002,
equation (4.32)]. Note that the notation is slightly different from that in Kaneko and Shearer [2014]. We then
sum u(x, t) at a receiver for contributions from all the source grid points to account for the finiteness of
the simulated source. As a test of both the numerical solution and the representation theorem approach,
we have verified that both produce the same seismograms at close distances to the source (in this case we
retained the near-field terms in Aki and Richards [2002]). To focus only on source properties, we assume no
attenuation or scattering in computing our synthetic seismograms.
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Figure 3. Characteristics of a symmetrical circular source with the rate of frictional weakening A′
w = 84 and the rupture

speed Vr∕𝛽 = 0.9. (a) Final slip distribution and (b) the corresponding stress-change distribution on the fault. White
star indicates the hypocenter. (c–f ) The profiles of slip S′, stress change Δ𝜎′ , and fracture energy G′ along x (solid) and y
(dashed) directions.

The corresponding spectrum is obtained by taking the Fourier transform of the magnitude of the far-field
displacement |u(x, t)| at each receiver. The corner frequency and spectral fall-off rate are estimated using
common procedures in observational work. We fit a Brune-type spectral function [Brune, 1970] given by

u(f ) =
Ω0

1 + (f∕fc)n
(17)

to an individual spectrum, where Ω0 is the long-period spectral level, which is proportional to the seismic
moment, fc is the corner frequency, and n is the spectral fall-off rate. The spectral parameters fc and n
are estimated by a least squares fit of the log spectrum with function (17) for 0.05fc ≲ f ≲ 10fc using
a grid-search method (e.g., Figure 4c). We weight the fit inversely with frequency so that all parts of the
spectrum seen in a log-log plot contribute equally. This weighting procedure generally improves the fit to
the low-frequency part of the spectrum, which is defined by relatively few points.

The corner frequencies of displacement spectra are computed at takeoff angles sampled every 5◦ over
the focal sphere. The variations of normalized (see below) corner frequencies and spectral fall-off rates are
projected on a unit sphere for visualization (Figure 4). Near the equator (or low latitudes), the resulting
corner frequencies are generally smaller due to the directivity effect; the difference between wave arrivals
from the near side and far side of the fault is larger, resulting in a longer pulse duration and smaller corner
frequency (Figures 4a). Spectral fall-off rates are generally larger at higher latitudes (Figures 4b). Although
a slight asymmetry comes from different dynamic source behavior along the Mode II and III directions,
the corner frequencies for the symmetrical circular model do not display strong azimuthal dependence
(Figure 4a). The relations between the spherical average of P and S corner frequencies and the source radius
are found as

f̄ p
c = kp 𝛽

a
= 0.38

𝛽

a

f̄ s
c = ks 𝛽

a
= 0.26

𝛽

a
(18)
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Figure 4. Far-field displacements, spectra, and corner frequencies f ′c for a symmetrical circular model with rupture speed
Vr∕𝛽 = 0.9. (a) Variations of P and S wave f ′c over the focal sphere. The black circle on the x-y plane is parallel to the
fault surface. The values of kp and ks (i.e., the spherical average of f ′c) are indicated. (b) Variations of P and S spectral
fall-off rates over the focal sphere. The spherical average of fall-off rates n̄ is indicated. (c) Magnitude of far-field
displacement and spectra at receiver R1. Dashed lines show the best fitting model of equation (17) with fall-off rate n,
root-mean-square error (RMS), and corner frequency f ′c (open square).

for the symmetrical circular source with the rupture speed Vr = 0.9𝛽 . The k values are the corner frequencies
normalized by the shear velocity 𝛽 and source dimension a, and we will sometimes refer to k as normalized
corner frequency when comparing the results of different source scenarios. As discussed in Kaneko and
Shearer [2014], the values of k in (18) are larger than those in the Madariaga model by 19% for P waves and
24% for S waves, respectively. They are smaller than those of Sato and Hirasawa [1973] with kp = 0.42 and
ks = 0.29 because the source duration of the cohesive-zone model is longer, due to the spontaneous healing
of slip, than that of Sato and Hirasawa [1973]. The values of k for both P and S waves are larger for models
with faster rupture speeds (Table 1), consistent with the results of Sato and Hirasawa [1973]. The P-to-S
corner frequency ratio kp∕ks is also larger for models with a faster rupture speed.

The resulting stress drop Δ𝜎, scaled energy E′
r∕M′

0, and radiation efficiency 𝜂eff = 2𝜇Er∕(Δ𝜎M0) for each
source scenario are shown in Table 1. The stress drop based on equation (2) increases slightly with the
rupture speed Vr but generally remains almost independent of Vr (Table 1). The radiated energy Er of the
source model can be computed via [e.g., Kostrov, 1974; Ma and Archuleta, 2006]

Er = ∫Σ

𝜏o(𝜉) + 𝜏 f(𝜉)
2

D(𝜉)dΣ − ∫
∞

0 ∫Σ
𝜏(𝜉, t)V(𝜉, t)dΣdt , (19)

where 𝜏o is the initial shear stress, 𝜏 f is the final shear stress, D is the slip, V is the slip rate, and Σ is the source
area. We find that E′

r∕M′
0 is larger for models with a faster rupture speed (Table 1), also consistent with the
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Table 1. Source Parameters for All the Rupture Models Considered in This Studya

kp ks 𝜂eff

Vr
𝛽

kp

ks
Δ𝜎
Δ𝜎d

E′r
M′

0

Es
r

Ep
r

kp
stack

ks
stack

kp
n = 2 ks

n = 2 kp
Snoke

ks
Snoke

Sym. circ.

0.6 0.30 0.25 1.2 1.21 0.12 0.20 17 0.31 0.28 0.23 0.21 0.31 0.26

0.7 0.32 0.26 1.2 1.23 0.16 0.26 17 0.34 0.30 0.25 0.24 0.33 0.29

0.8 0.35 0.26 1.3 1.24 0.20 0.34 18 0.37 0.30 0.27 0.29 0.36 0.32

0.9 0.38 0.26 1.5 1.26 0.30 0.48 22 0.39 0.29 0.29 0.34 0.38 0.36

Asym. circ.

0.6 0.21 0.20 1.1 1.14 0.059 0.098 24 0.22 0.21 0.19 0.17 0.21 0.20

0.7 0.24 0.23 1.0 1.17 0.093 0.16 26 0.25 0.25 0.21 0.20 0.24 0.22

0.8 0.27 0.26 1.0 1.20 0.16 0.26 30 0.27 0.27 0.23 0.24 0.27 0.25

0.9 0.29 0.28 1.0 1.22 0.30 0.50 37 0.30 0.27 0.26 0.30 0.29 0.29

Sym. ellip.

0.7 0.30 0.24 1.3 1.20 0.095 0.16 19 0.29 0.26 0.21 0.20 0.29 0.24

0.9 0.34 0.26 1.3 1.23 0.16 0.27 21 0.35 0.29 0.25 0.26 0.33 0.29

1.3 0.41 0.28 1.5 1.26 0.26 0.41 21 0.43 0.32 0.30 0.31 0.38 0.34

1.6 0.42 0.28 1.5 1.27 0.31 0.48 18 0.42 0.32 0.35 0.32 0.42 0.36

Asym. ellip.

0.7 0.19 0.19 1.0 1.12 0.062 0.11 33 0.20 0.21 0.17 0.18 0.19 0.19

0.9 0.25 0.26 0.96 1.16 0.19 0.32 39 0.25 0.27 0.22 0.26 0.24 0.25

1.3 0.35 0.31 1.1 1.20 0.27 0.45 24 0.37 0.31 0.29 0.30 0.31 0.31

1.6 0.42 0.33 1.3 1.23 0.30 0.49 12 0.43 0.33 0.39 0.30 0.38 0.33

aThe results of symmetrical circular source (sym. cir.), asymmetrical circular source (asym. cir.), symmetrical elliptical source (sym. ellip.), and asymmetrical
elliptical source (asym. ellip.) are described in sections 3–6, respectively. P and S wave corner frequencies kp = f̄ p

c a∕𝛽 and ks = f̄ s
c a∕𝛽 , stress drop

Δ𝜎∕Δ𝜎d (equation (2)), radiated energy to moment ratios E′r∕M′
0, radiation efficiency 𝜂eff, and S-to-P radiated energy ratio Es

r∕Ep
r for models with a different

rupture speed Vr∕𝛽 are shown. Corner frequencies kp and ks with subscripts “stack” and “n = 2” correspond to corner frequencies obtained by stacked
spectra and fitting with n = 2 to the stacked spectra, respectively. Corner frequency frequencies kp

Snoke
and ks

Snoke
are calculated using the definition of

Snoke [1987] (see text). Note that Δ𝜎, E′r∕M′
0, and 𝜂eff are computed from dynamic source models directly, whereas the others are estimated from far-field

displacements or spectra.

results of Sato and Hirasawa [1973]. Since Δ𝜎 is almost independent of Vr, the radiation efficiency 𝜂eff is also
larger for models with a faster rupture speed (Table 1).

The ratio of S-to-P radiated energy, Es
r∕Ep

r , is another important parameter for understanding the underlying
source processes and is often inferred from observations. We estimate the total radiated energy Er from the
far-field body waves using [e.g., Haskell, 1964]

Er = Ep
r + Es

r = 2𝜌∫Γ ∫
∞

0

[
𝛼(u̇p)2 + 𝛽( u̇s)2

]
df dΓ for frequency domain (20)

Er = Ep
r + Es

r = 𝜌∫Γ ∫
∞

0

[
𝛼(u̇p)2 + 𝛽(u̇s)2

]
dtdΓ for time domain , (21)

where u̇p and u̇s are far-field particle velocities for P and S waves, respectively, and Γ is the area over the focal
sphere. Kaneko and Shearer [2014] found that the estimated radiated energy using the time domain method
agrees well with that of the input source model. For a point source model where the P and S wave pulses
have identical shapes and hence the same f p

c and f s
c , Es

r∕Ep
r = 23 for a Poisson solid. For the symmetrical

circular model, the time domain method yields Es
r∕Ep

r = 22 for Vr = 0.9𝛽 (Table 1). These values are close to
the point source model and also agree fairly well with Es

r∕Ep
r = 25 for the circular source model of Sato and

Hirasawa [1973]. The Es
r∕Ep

r ratio is larger for models with a faster rupture speed, suggesting that the S wave
energy is radiated more efficiently for models with faster rupture speeds.

4. Asymmetrical Circular Rupture

To illustrate the influence of rupture directivity on the corner frequencies of far-field body waves, we
consider a source model where the rupture nucleates at the periphery of the circular fault and propagates
to the other end. As in the symmetrical circular model, we assume that the rupture expands radially
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Figure 5. Characteristics of an asymmetrical circular source with the rate of frictional weakening A′
w = 84 and the

rupture speed Vr∕𝛽 = 0.9. (a) Final slip distribution and (b) the corresponding stress-change distribution on the fault.
White star indicates the hypocenter. (c–f ) The profiles of slip S′, stress change Δ𝜎′, and fracture energy G′ along x (solid)
and y (dashed) directions.

outward until it encounters the edge of the circular source, and hence, the rupture mostly propagates

unilaterally (Figure 1b). The stopping phases are continuously generated as the rupture front reaches the

periphery of the source region. This assumption is different from the asymmetrical rupture model of

Dong and Papageorgiou [2002a] where the rupture simultaneously arrests at the circular periphery of

the source.

Slip and stress drop distributions for a representative model are shown in Figure 5. Compared to the

symmetrical circular model (Figure 3), the asymmetrical model leads to asymmetrical slip and stress

distributions. As in the symmetrical model, the fracture energy monotonically increases with distance away
from the hypocenter (Figures 5e). The actual stress drop is similar to the dynamic stress drop Δ𝜎d in the

region near the hypocenter but is larger by up to a factor of 2 in some parts of the source region (Figures 5b

and 5d). The stopping phases generated at the periphery of the source region propagate over the fault

incoherently, and consequently, the stress overshoot averaged over the source region is slightly smaller than

that in the symmetrical circular model.

The corresponding far-field displacement pulses and their spectra are shown in Figure 6. The displacement

pulses for the asymmetrical model are quite different from those of the symmetrical model and show larger

variability in the shape of the displacements over the focal sphere. Unlike the symmetrical circular model

(Figure 4), the asymmetrical model displays a strong azimuthal dependence due to the asymmetry of the

rupture evolution, or the directivity effect (Figure 6). It is evident from Figure 6a that the corner frequencies

are larger in the region along the direction of rupture propagation (e.g., at receiver R1 in Figure 6) than the

region from which the rupture propagates away (e.g., at receiver R2). The directivity effect is stronger for

S waves than P waves because the rupture speed Vr∕𝛽 = 0.9 is closer to the S wave speed than the P wave

speed (Figure 6a). The spectral fall-off rates n show more complex patterns, with n ranging from 1.9 to 2.8

and 1.5 to 3.0 for P and S waves, respectively (Figure 6b).
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Figure 6. Far-field displacements, spectra, and corner frequencies f ′c for the asymmetrical circular model with rupture
speed Vr∕𝛽 = 0.9 shown in Figure 5. (a) Variations of f ′c over the focal sphere. The black circle on the x-y plane is parallel
to the fault surface. The hypocenter is located in the R2 side. The values of kp and ks (i.e., the spherical average of f ′c) are
indicated. (b) Variations of P and S spectral fall-off rates over the focal sphere. The spherical average of fall-off rates n̄ is
indicated. (c) Magnitude of far-field displacements and spectra at receivers R1 and R2. Dashed lines show the best fitting
model of equation (17) with fall-off rate n, root-mean-square error (RMS), and corner frequency f ′c (open square).

The relations between the spherical average of P and S corner frequencies and the source radius are
found as

f̄ p
c = kp 𝛽

a
= 0.29

𝛽

a
(22)

f̄ s
c = ks 𝛽

a
= 0.28

𝛽

a
(23)

for the asymmetrical circular model with the rupture speed Vr = 0.9𝛽 . The source duration of the
asymmetrical model is longer, and hence, the durations of the displacement pulses are generally longer
than those of the symmetrical model. This leads to smaller kp. Interestingly, ks for the asymmetrical model
is slightly larger than that of the symmetrical model (compare equation (18) and equation (23)). Although
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the overall source duration is longer and hence the corner frequencies are generally smaller for the
asymmetrical model, the strong directivity of S waves leads to larger corner frequencies locally (e.g., at
receiver R1 in Figure 6), making the average value ks comparable to that of the symmetrical source model.

The values of k, stress drop, scaled energy, and radiation efficiency for models with other subshear
rupture speeds are shown in Table 1. The k values increase with the rupture speed and are generally smaller
than those of the symmetrical model, consistent with the results of Dong and Papageorgiou [2002a]. Unlike
the symmetrical models, the P and S wave normalized corner frequencies for the asymmetrical models are
comparable and their ratio kp∕ks remains roughly constant over a range of rupture speeds (Table 1). The
stress drop increases slightly with the rupture speed Vr but generally remains almost independent of Vr

(Table 1). The scaled energy E′
r∕M′

0 and the radiation efficiency 𝜂eff are generally smaller by a factor of 1.1 to
1.7 than those of the symmetrical model with the same rupture speed (Table 1). This is expected because the
radiation efficiency depends on the effective source duration, which is longer in the asymmetrical models.

The ratios of S-to-P radiated energy Es
r∕Ep

r for the asymmetrical models are systematically larger than those
of the symmetrical models (Table 1). For example, in the asymmetrical model with Vr = 0.9𝛽 , Es

r∕Ep
r = 37,

which is 1.7 times larger than that of the symmetrical model. Since radiated energy is generally smaller for
spectra with smaller corner frequencies, small kp relative to ks in the asymmetrical models leads to smaller
Ep

r and hence larger Es
r∕Ep

r .

We have also computed a source scenario where the nucleation is at the bottom of the circular source, and
hence, the rupture is predominantly Mode III (not shown in this work). In such a case, the patterns of corner
frequencies and spectral fall-off rates with respect to the hypocentral location are quite similar to the
asymmetrical source scenario discussed above.

5. Symmetrical Elliptical Rupture

We further consider elliptical source geometries where the rupture nucleates at the center of the ellipse and
propagates at different speeds in different directions (Figure 1c). In what we call “symmetrical elliptical mod-
els,” we construct the source geometry such that the rupture front simultaneously reaches the periphery of
the elliptical region with the major and minor axes a and b, respectively. Mathematically, this means that

Vx

Vy
= a

b
, (24)

and the stopping phases are generated at that same instance once the rupture reaches the edge of the
elliptical source. Using this source scenario, we explore the effects of subshear and supershear ruptures on
the resulting corner frequencies and other source parameters.

Slip and stress drop distributions for a representative model are shown in Figure 7. The source behavior of
symmetrical elliptical models is qualitatively similar to that of symmetrical circular ones. The amplitudes
of slip and stress change in the circular and elliptical models are comparable (Figure 7). As in symmetrical
circular models, the actual stress drop is up to 2 times larger than the dynamic stress drop Δ𝜎d near the
center of the fault, and the resulting fracture energy is smaller in the Mode II direction than the Mode III
direction (Figure 7). Since the rupture speed in the Mode II direction is supershear in this model, the fracture
energy in that direction is smaller than that of the circular source with Vr = 0.9𝛽 shown in Figure 3e.

The corresponding far-field displacement pulses and their spectra are shown in Figure 8. For subshear
rupture, the elliptical model shows a moderate azimuthal dependence of corner frequencies over the focal
sphere due to the ellipticity of the source (Figure 8a). The direction of the major axis of the ellipse generally
coincides with longer durations of the displacement pulses and hence smaller corner frequencies
(e.g., receiver R1 in Figure 8a), because it takes a longer time for the stopping phases to sweep through the
source region in that direction. The durations of displacement pulses are generally longer, and hence, fc

is smaller in the symmetrical elliptical model than the symmetrical circular model (compare Figure 4c and
Figure 8b). Another notable difference is the scaled energy E′

r∕M′
0. For a given rupture speed, E′

r∕M′
0 and the

radiation efficiency 𝜂eff are smaller by up to a factor of 2 in the elliptical models than the circular models for
the same rupture speed (Table 1), consistent with the results of Dong and Papageorgiou [2003]. Both E′

r∕M′
0

and 𝜂eff decrease with models with larger eccentricity 𝜀, or a higher degree of ellipticity of the source.

For supershear rupture, the general pattern of the corner frequencies remains the same as that in the
subshear rupture; however, the variability of both f p

c and f s
c over the focal sphere is greatly enhanced, with
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Figure 7. Characteristics of a symmetrical elliptical source with the rate of frictional weakening A′
w = 84, eccentricity

𝜀 = 0.83, rupture speeds Vx∕𝛽 = 1.6, and Vy∕𝛽 = 0.9. (a) Final slip distribution and (b) the corresponding stress-change
distribution on the fault. White star indicates the hypocenter. (c–f ) The profiles of slip S′, stress change Δ𝜎′ , and fracture
energy G′ along the x (solid) and y (dashed) directions.

f p
c and f s

c ranging from 0.2 to 0.8 depending on the takeoff angles (Figure 8c). This enhanced variability is
reflected by greater variability in durations of displacement pulses (Figure 8d). The relations between the
spherical average of P and S corner frequencies and the source radius are found as

f̄ p
c = kp 𝛽√

ab
= 0.42

𝛽√
ab

(25)

f̄ s
c = ks 𝛽√

ab
= 0.28

𝛽√
ab

(26)

for the symmetrical elliptical model with the rupture speeds Vx = 1.6𝛽 and Vy = 0.9𝛽 . The supershear
rupture models result in shorter durations of the displacement pulses and hence larger normalized corner
frequencies over the focal sphere than those in the subshear ones. The values of kp and ks generally increase
with the rupture speed even in the supershear regime (Table 1). The scaled energy E′

r∕M′
0 also increases

with the rupture speed, as expected. The spherical average of the spectral fall-off rates n̄ remains roughly
the same over a wide range of rupture speeds, with n̄ being 2.4 to 2.5 for P waves and 1.9 to 2.0 for S waves,
which are similar to those in the symmetrical circular subshear ruptures. Hence, the general behavior of the
spherical average of corner frequencies and other source parameters in the subshear regime extends to
the supershear regime.

We calculate the stress drop using equation (A1), which takes into account the ellipticity of the source. The
stress drop increases slightly with the rupture speed Vr but generally remains almost independent of Vr even
in the supershear regime (Table 1).

6. Asymmetrical Elliptical Rupture

Lastly, we consider asymmetrical elliptical models where the rupture nucleates at one end and propagates
mostly unilaterally at a subshear or supershear speed while maintaining the elliptical shape of the rupture
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Figure 8. Far-field displacements, spectra, and corner frequencies f ′c for symmetrical elliptical models with subshear
and supershear rupture speeds. (a) Variations of f ′c over the focal sphere for a model with eccentricity 𝜀 = 0.83, rupture
speeds Vx∕𝛽 = 0.9, and Vy∕𝛽 = 0.51. The black circle on the x-y plane is parallel to the fault surface. The values of kp

and ks (i.e., the spherical average of f ′c) and the average spectral fall-off rate n̄ are indicated. (b) Magnitude of far-field
displacements and spectra at receivers R1 and R2. Dashed lines show the best fitting model of equation (17) with
fall-off rate n, root-mean-square error (RMS), and corner frequency f ′c (open square). (c–d) Similar plots for a model with
eccentricity 𝜀 = 0.83, rupture speeds Vx∕𝛽 = 1.6, and Vy∕𝛽 = 0.9 shown in Figure 7.
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Figure 9. Characteristics of an asymmetrical elliptical source with the rate of frictional weakening A′
w = 84, eccentricity

𝜀 = 0.83, rupture speeds Vx∕𝛽 = 1.6, and Vy∕𝛽 = 0.9. (a) Final slip distribution and (b) the corresponding stress-change
distribution on the fault. White star indicates the hypocenter. (c–f ) The profiles of slip S′, stress change Δ𝜎′ , and fracture
energy G′ along x (solid) and y (dashed) directions.

front (Figure 1d). As in the asymmetrical circular model, the stopping phases are continuously generated
as the rupture front reaches the periphery of the source region. Despite the combined effect of rupture
directivity and ellipticity of the source, the resulting slip, stress drop, and fracture energy distributions are
qualitatively similar to those of the asymmetrical circular model, with comparable magnitude of slip and
stress drop within the source region (compare Figure 5 and Figure 9).

The corresponding far-field displacements and corner frequencies show the greatest variability over the
focal sphere among all the source scenarios we have considered (Figure 10). For example, for the model
with supershear rupture shown in Figure 10c, f p

c and f s
c range from 0.18 to 1.3 and 0.15 to 0.90, respectively.

As in the asymmetrical circular models, the rupture directivity enhances variability in the durations of the
displacement pulses and hence their corner frequencies. The corner frequencies are larger at receivers
located in the direction of rupture propagation (e.g., at receiver R1 in Figures 10a and 10b) than the region
away from rupture propagation (e.g., at receiver R2). This directivity effect shows up in both subshear and
supershear rupture regimes (Figures 10a and 10c).

The relations between the spherical average of P and S corner frequencies and the source radius are
found as

f̄ p
c = kp 𝛽√

ab
= 0.42

𝛽√
ab

(27)

f̄ s
c = ks 𝛽√

ab
= 0.33

𝛽√
ab

(28)

for the asymmetrical elliptical model with the rupture speeds Vx=1.6𝛽 and Vy=0.9𝛽 . Similar to the
results for the circular source models, ks is larger in the asymmetrical model than the symmetrical model
(compare equation (26) and equation (28)). Although the overall source duration is longer and hence
the corner frequencies are generally smaller for the asymmetrical model, the strong directivity leads to

KANEKO AND SHEARER ©2014. American Geophysical Union. All Rights Reserved. 14



Journal of Geophysical Research: Solid Earth 10.1002/2014JB011642

Figure 10. Far-field displacements, spectra, and corner frequencies f ′c for asymmetrical elliptical models with subshear
and supershear rupture speeds. (a) Variations of f ′c over the focal sphere for a model with eccentricity 𝜀 = 0.83, rupture
speeds Vx∕𝛽 = 0.9, and Vy∕𝛽 = 0.51. The black circle on the x-y plane is parallel to the fault surface. The hypocenter
is located in the R2 side. The values of kp and ks (i.e., the spherical average of f ′c) and the average spectral fall-off rate n̄
are indicated. (b) Magnitude of far-field displacements and spectra at receivers R1 and R2. Dashed lines show the best
fitting model of equation (17) with fall-off rate n, root-mean-square error (RMS), and corner frequency f ′c (open square).
(c–d) Similar plots for a model with eccentricity 𝜀 = 0.83, rupture speeds Vx∕𝛽 = 1.6, and Vy∕𝛽 = 0.9 shown in Figure 9.
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Figure 11. (a–f ) Variations of S scaled energy E′sr ∕M′
0 over the focal sphere for different source scenarios. The scaled

energy is calculated using a single-station estimation method discussed in the text.

larger corner frequencies locally, making the average value ks larger than that of the symmetrical elliptical
model (compare receiver R1 in Figure 8d and Figure 10d). As in the symmetrical elliptical source, the
stress drop increases slightly with the rupture speed Vx but generally remains almost independent
of Vx even in the supershear regime (Table 1). The scaled energy and radiation efficiency in both the
symmetrical and asymmetrical elliptical models are similar despite different source durations and k values
in those cases.

For supershear rupture, the P wave corner frequency is much larger than that of the subshear rupture, as
the directivity effects become stronger when the rupture speed approaches the P wave speed (Figure 10c).
In addition, the ascending segment of the S wave displacement pulses is convex upward at some takeoff
angles where shear Mach waves are expected (e.g., receiver R1 in Figure 10d). Furthermore, the pattern
of the S wave corner frequencies over the focal sphere is different from that of the subshear rupture
(Figures 10a and 10c). These features are related to shear Mach waves produced by the propagation of
supershear rupture. Indeed, the S wave corner frequencies are the largest at the “Mach angle” cos−1(𝛽∕Vr)
(= 51.3o in the case of Figure 10c) [e.g., Bernard and Baumont, 2005; Mello et al., 2010]. These results
suggest that earthquakes with subshear and supershear rupture speeds can be distinguished by analysis of
variability in corner frequencies.
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Another notable difference between subshear and supershear ruptures is that kp and ks for supershear
ruptures are no longer similar, and the kp∕ks ratio increases with the rupture speed (Table 1). This is also
reflected by the ratio of S-to-P radiated energy Es

r∕Ep
r , which increases with the rupture speed in the

subshear regime, whereas Es
r∕Ep

r decreases with increasing rupture speed in the supershear regime, with the
smallest Es

r∕Ep
r = 12 obtained for Vx = 1.6𝛽 (Table 1). Since radiated energy is generally larger for spectra

with larger corner frequencies, large kp relative to ks in the supershear regime leads to large Ep
r and hence

small Es
r∕Ep

r .

7. Estimation of Radiated Energy

The radiated energy of an earthquake is often estimated from far-field spectra on a station-by-station basis.
We quantify variability in estimated radiated energy using computed far-field spectra for the source models
considered in this work. In a uniform whole space, the far-field radiated S wave energy may be expressed as

Es
r =

⟨Ψ2
s ⟩

4𝜋𝜌𝛽5
M2

0 ∫
∞

0
|𝜔A(𝜔)|2d𝜔 , (29)

where ⟨Ψ2
s ⟩ is the mean over the focal sphere of the radiation pattern Ψ2

s (=2∕5 for S waves), M0 is the
seismic moment, 𝜔 is the angular frequency, and A(𝜔) is the normalized displacement spectrum [Mayeda
and Walter, 1996; Baltay et al., 2011]. This single-station estimate is corrected for the radiation pattern but
can still be biased by directivity effects. The nondimensional scaled energy may be expressed as

E′s
r

M′
0

=
Es

r

M0

𝜇

Δ𝜎d
=

⟨Ψ2
s ⟩

4𝜋𝛽3Δ𝜎d
M0 ∫

∞

0
|𝜔A(𝜔)|2d𝜔 . (30)

Figure 11 shows the variations of estimated scaled energy E′s
r ∕M′

0 over the focal sphere for different source
scenarios. Since S wave radiated energy is much larger than the P wave energy (i.e., Es

r ≫ Ep
r ), the total scaled

energy Er∕M0 ≈ Es
r∕M0. For symmetrical circular and elliptical models, the estimated scaled energy does

not vary much over the focal sphere, although the supershear rupture scenario shows a moderate azimuthal
dependence (Figures 11a, 11c, and 11d). On the other hand, the asymmetrical circular and elliptical models
show large variations in the estimated scaled energy over the focal sphere (Figures 11b, 11e, and 11f). For
example, in the asymmetrical elliptical rupture with Vx = 1.6𝛽 , E′s

r ∕M′
0 ranges from 0.04 to 4.0 depending

on the takeoff angle. Due to the directivity effects, the scaled energy is much larger at receivers located in
the direction of rupture propagation than the region from which the rupture propagates away. The patterns
of estimated radiated energy and corner frequencies are quite similar, and the regions of larger radiated
energy coincide with those of larger corner frequencies and vice versa (compare Figure 6a and Figure 11b).
For the asymmetrical elliptical supershear rupture, locally large E′s

r ∕M′
0 is associated with shear Mach waves

emerged at the “Mach angle” cos−1(𝛽∕Vr) (Figures 11f ). We discuss uncertainty in radiated energy estimates
due to limited station coverage in section 8.

8. Discussion
8.1. Dependence of Corner Frequencies on Rupture Speeds
We compare the dependence of normalized corner frequencies kp and ks on the rupture speed Vr for all
the models considered in this work (Figure 12). For a given source geometry and rupture style, the relation
between kp and Vr is almost linear over the range of rupture speeds (Figure 12a). On the contrary, the
dependence of ks on Vr shows more complex behavior, although ks is still a monotonic function of Vr for a
given source geometry and rupture style (Figure 12b).

8.2. Implications for Variability in Stress Drops and Radiation Efficiency in Observational Work
Stress drop estimates over wide regions are observed to exhibit large scatter, with variations on the order
of 102 even for events recorded by 20 or more stations [e.g., Shearer et al., 2006]. This scatter is reduced
somewhat for nearby earthquakes, but stress drops for closely spaced events still vary by factors of 20 or
more. A key question is how much of this scatter is caused by variability of source parameters that are
independent of the actual stress drop. For the corner frequencies reported in Table 1 and Figure 12, we find
that kp and ks range from 0.19 to 0.42 and 0.19 to 0.33, respectively, despite similar static stress drops Δ𝜎
among different source scenarios. This means that, by assuming k in equation (4) derived from a particular
model (e.g., the symmetrical circular rupture with Vr = 0.9𝛽), estimated stress drops for these events would
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Figure 12. (a and b) Dependence of spherical average of
normalized corner frequencies kp and ks on the rupture
speed Vr for all the source scenarios.

vary by a factor of 5–10 depending on the
differences in source geometry, rupture styles,
and rupture speeds. This variability is likely to
be small compared to that in real earthquakes,
given that the source geometry and rupture styles
considered here are still relatively simple.

Additional source complexity can further affect kp,
ks, and resulting stress drop estimates. Our source
models are characterized by constant rupture
speeds, regular source geometry (i.e., circular or
elliptical), and near-uniform stress drops. It is likely
that real earthquakes, even small, are not that
regular. By considering singular crack solutions
with instantaneous fault healing, Dong and
Papageorgiou [2002b] found that variable rupture
speeds can enhance directivity effects with
stronger radiation channeled in the direction
of crack growth. Their results indicate that, with
accelerating or decelerating rupture, variability
in corner frequencies over the focal sphere
can increase further and influence kp and ks. In
addition, Noda et al. [2013] argued that the spatial
average of heterogeneous stress drop can differ
from the moment-based stress drop (equation (2))
by up to a factor of 2. Quantifying the relative
importance of these complexities will be needed
to understand the large uncertainties in stress
drop estimates.

Since source geometry and rupture speed for
small earthquakes are generally unknown, one
can explain an anomalously low corner frequency
with either a small stress drop or a slower rupture
speed. This trade-off propagates through radiation
efficiency estimates. To quantify the uncertainty

in radiation efficiency associated with unknown source geometry and rupture speed, we estimate radiation
efficiency 𝜂eff = 2𝜇Er∕(Δ𝜎M0) for all the source models assuming that the sources are symmetrical circular
ruptures with speed Vr = 0.9𝛽 . Figure 13 compares these estimated radiation efficiencies (dashed lines)
computed from both P and S wave stress drop estimates to the true radiation efficiencies (solid lines), as
a function of rupture geometry and speed. In general, the true radiation efficiency increases with rupture
speed and is also somewhat higher for the circular crack models compared to the elliptical models. However,
when the actual rupture speed is smaller than the assumed 0.9𝛽 , the stress drop is underestimated and, as
a result, the radiation efficiency 𝜂eff is overestimated, often by factors of 2 or more. Large errors in estimated
𝜂eff also occur when the wrong source geometry or rupture directivity is assumed. The bias is usually higher
for 𝜂eff estimates derived from P waves compared to S wave estimates because kp exhibits larger variations
than ks (see Table 1). These biasing effects indicate that radiation efficiency estimates derived from observed
seismic spectra should not be directly interpreted as describing rupture properties unless there are
independent constraints on rupture speed and geometry. In particular, analysis of a low rupture speed
earthquake may not yield the expected low-radiation efficiency estimate if the estimate is obtained from a
model that assumes a higher rupture speed.

8.3. Uncertainty in Corner Frequency Estimation due to Limited Station Coverage
An underappreciated aspect of the Madariaga model, confirmed by our own work, is the large
dependence of fc on takeoff angle relative to the source, which is greatly enhanced by the directivity effect
(e.g., Figure 6a). Thus, measurements from a small number of seismic stations are unlikely to produce
unbiased estimates of spherically averaged fc, even if we assume that attenuation corrections are perfect.

KANEKO AND SHEARER ©2014. American Geophysical Union. All Rights Reserved. 18



Journal of Geophysical Research: Solid Earth 10.1002/2014JB011642

Figure 13. Errors in estimated radiation efficiency due
to unknown source geometry and rupture speed, for
stress drop estimates obtained from (a) P waves and
(b) S waves. Solid lines plot the “true” radiation efficiency
of each source model 𝜂rad

true as a function of rupture
speed. For comparison, the dashed lines show estimated
radiation efficiency 𝜂rad

estimated
= 2𝜇Er∕(Δ𝜎M0) computed

by assuming the correct Er∕M0 and the spherical average
of corner frequencies f̄c , the relation between Δ𝜎 and f̄c
for a circular source (equation (4)), and a single fixed value
of kp or ks obtained from the symmetrical circular rupture
with Vr = 0.9𝛽 . Note that when the rupture speed is
actually smaller than the 0.9𝛽 used for the estimation, one
will obtain incorrectly higher radiation efficiency.

A factor of 2 difference in the spherical average
of corner frequencies f̄c will produce a factor of 8
difference in stress drop. As an example, synthetic
tests of random takeoff angles show large scatter
in stress drop estimates from single-station
measurements, which is reduced as more stations
are averaged (see Figure 14). Histograms of log10 Δ𝜎
estimates in Figure 14 are approximately lognormal
distributed, and standard errors in log10 stress drops
are 0.34 and 0.55 for single-station P and S wave esti-
mates, respectively, which are reduced to 0.17 and
0.30 for five-station estimates and 0.12 and 0.21 for
ten-station estimates. Note that, for example, ±0.55
in log10 Δ𝜎 gives standard error bars that span from
0.29 to 3.5 times the true stress drop; that is, there
is a 68% chance the true stress drop is within that
range. These should be taken as lower bounds on
the errors because it is unlikely that the true station
distribution will mimic random takeoff angles.

8.4. Uncertainty in Radiated Energy Estimation
due to Limited Station Coverage
Using the estimated scaled energy described in
section 7, we quantify uncertainty in scaled energy
estimates due to limited station coverage. Figure 15
shows histograms of normalized scaled energy
estimates for three source scenarios in Figure 11.
As expected, standard errors in log10(Er∕M0) are
quite small for symmetrical models (e.g., Figure 15a).
However, for asymmetrical models, the standard
errors increase significantly due to the directivity
effects. For example, the standard error in
log10(Er∕M0) for the asymmetrical circular model is
0.39 for single-station estimates, which is reduced
to 0.27 for five-station estimates and 0.20 for
ten-station estimates (Figure 15b). The standard
errors are even larger for the asymmetrical elliptical
supershear rupture (Figure 15c). Hence, as in stress
drop estimates, the large dependence of scaled
energy on takeoff angle relative to the source
suggests that measurements from a small number
of seismic stations are unlikely to produce unbiased
estimates of spherically averaged scaled energy.

Given a limited number of stations available for
seismic observations, what kind of station coverage
is optimal for estimating corner frequencies and
scaled energy? Our results show that the patterns of

corner frequencies and scaled energy over the focal sphere depend on source geometry, rupture directivity,
and rupture speeds (e.g., Figure 11). This suggests that an approximately uniform coverage of seismic
stations over the focal sphere will most accurately capture the spherical average of these parameters.
Utilizing seismic stations covering only one side of the focal sphere (e.g., on-land seismometers recording
offshore events in subduction zones) likely increases the bias in estimating the spherical average.

8.5. Uncertainty in Radiation Efficiency Estimation due to Limited Station Coverage
We further quantify uncertainty in radiation efficiency estimates for a few selected source scenarios
(Figure 16). We calculate radiation efficiency 𝜂eff from single-station estimates of scaled energy E′

r∕M′
0
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Figure 14. Histograms of normalized stress drops for different numbers of random stations based on the corner
frequencies shown in Figure 6a. The horizontal axis shows estimated stress drop Δ𝜎estimated normalized by the true stress
drop Δ𝜎true obtained from perfect station coverage. The standard deviation (std) in log10 Δ𝜎estimated and the number of
stations are indicated in each panel.

and S wave corner frequencies (and stress drops Δ𝜎). We find that standard errors in log10 𝜂eff are larger
than those of the scaled energy for the symmetrical circular models (Figure 16a). This is expected because
radiation efficiency depends on the ratio of scaled energy to stress drop and hence is affected by errors in
either parameter. On the other hand, the standard errors in radiation efficiency for the asymmetrical models
are smaller than those in scaled energy. For example, the standard error in log10 𝜂eff for the asymmetrical
circular model is 0.25 for single-station estimate, whereas that in log10(Er∕M0) is 0.39 (Figures 15b and 16b).
Since the regions of larger scaled energy coincide with those of larger corner frequencies (and the stress
drops), the radiation efficiency, which is the ratio of these quantities, cancels out the directivity effect to
some degree.

8.6. On Averaging of Corner Frequencies From Individual Spectra Versus From Stacked Spectra
Uncertainty in stress drop estimation also includes how the average of corner frequencies f̄c is calculated.
In this work, we follow the approach of Madariaga [1976] where f̄c is the average of all the fc estimated for
individual spectra. At the same time, observational studies [e.g., Prieto et al., 2004; Shearer et al., 2006] often
use stacked log spectra in fitting a spectral function (e.g., equation (17)) because individual spectra tend to
be irregular in shape and difficult to fit robustly. Figures 17a and 17b show log spectra, their average (stack),
and the corresponding estimated corner frequencies k for the source model shown in Figure 5. The values of
kp and ks differ from those estimated from the spherical average by 3% in this case. When estimating fc from
the stacked spectra for all the source scenarios, the standard errors of the difference between these two
methods are 3 and 6% for kp and ks, respectively (Table 1). Hence, corner frequencies estimated by stacked
spectra generally agree reasonably well with those of the spherical average.

Observational studies often also assume a fixed fall-off rate n = 2 in fitting spectra. With a fixed fall-off rate
n = 2, kp decreases from 0.30 to 0.26, whereas ks increases from 0.27 to 0.30 (Figures 17c and 17d). Clearly,
there is a trade-off between fc and n in fitting the spectral function (17). For example, forcing n to be smaller
than the actual fall-off rate leads to a smaller fc , and this bias appears as a difference between the solid red
and dashed red curves in Figure 17c. To understand how this assumption affects the resulting fc, we estimate
kp and ks by fitting with n = 2 to stacked spectra for all the source scenarios (Table 1). The resulting kp and
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Figure 15. Histograms of normalized scaled energy for different numbers of random stations based on the corner
frequencies for (a) the symmetrical circular model with Vr = 0.9𝛽 , (b) the asymmetrical circular model with Vr = 0.9𝛽 , and
(c) the asymmetrical elliptical model with Vx = 1.6𝛽 . The horizontal axis shows estimated scaled energy (Es

r∕M0)estimated
normalized by the true scaled energy (Er∕M0)true obtained from perfect station coverage. Both the radiated energy and
seismic moment are estimated using an S wave spectrum at each station over the focal sphere. The standard deviation
(std) in log10(Es

r∕M0)estimated and the number of stations are indicated in each panel.

ks are quite different and often smaller than those obtained with variable n. Interestingly, k values for the
different assumed models agree better when the spectra are fit with n = 2 (Table 1).

8.7. On Using Objective Definitions of Corner Frequencies
Instead of fitting a function to a far-field displacement spectrum in estimating the corner frequency fc,
several possibly more objective definitions of fc have been proposed in the literature. The corner frequency
according to Silver [1983] is defined as

f Silver
c =

√
2

2𝜋
1
T
, (31)

where T 2 corresponds to both the curvature of a displacement spectrum at zero frequency and the variance
of the time domain pulse.
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Figure 16. Histograms of normalized radiation efficiency for different numbers of random stations based on the corner
frequencies for (a) the symmetrical circular model with Vr = 0.9𝛽 and (b) the asymmetrical circular model with Vr = 0.9𝛽 .
The horizontal axis shows estimated radiation efficiency 𝜂rad

estimated
= 2𝜇Es

r∕(M0Δ𝜎) normalized by the true radiation effi-
ciency 𝜂rad

true obtained from perfect station coverage. The radiated energy, seismic moment, and stress drop are estimated
using a S wave spectrum at each station over the focal sphere. The standard deviation (std) in log10 𝜂

rad
estimated

and the
number of stations are indicated in each panel.

The corner frequency according to Snoke [1987] is defined as

f Snoke
c =

[
J

2𝜋3Ω2
0

]1∕3

, (32)

where Ω0 is the long-period spectral level and J is the second moment of the power spectrum given by

J = 2∫
∞

0
|𝜔u(𝜔)|2df = 2

3
[Ω0𝜔1]2f1 + 2∫

f2

f1

|𝜔u(𝜔)|2df + 2|𝜔2u(𝜔2)|2f2 (33)

for the spectral bandwidth between f1 and f2. The method of Snoke [1987] was derived by assuming that the
displacement spectrum has a fall-off rate n = 2 (i.e., the 𝜔2 model) at frequencies beyond f2.

The corner frequency according to Andrews [1986] is defined as

f Andrews
c =

[
J

(2𝜋)2K

]1∕2

. (34)

where

K = 2∫
∞

0
|u(𝜔)|2df = 2[u(𝜔1)]2f1 + 2∫

f2

f1

|u(𝜔)|2df + 2
3
|u(𝜔2)|2f2 . (35)

Silver’s definition is difficult to apply for real data as it measures the curvature of the spectrum at zero
frequency, where the spectrum is typically not well resolved. In addition, Dong and Papageorgiou [2002a]
concluded that the Silver method yields substantially larger values of fc than other methods. We calculate
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Figure 17. Individual spectra (black lines) at different takeoff angles for the source model shown in Figure 5. A fraction
of all the spectra are plotted for (a) P and (b) S waves. The solid red line shows the average of the log spectra, and the
corresponding best fitting spectral function (equation (17)) is shown by the dashed red line. The estimated corner
frequencies, kp and ks, and fall-off rates n are indicated. Corner frequencies estimated from fitting the spectral
function (dashed black line) and using the methods of Snoke (blue) and Andrews (dashed blue) are shown.
(c–d) The same as Figures 17a and 17b except that the dashed red line is the best fitting spectral function with a fixed
fall-off rate n = 2.0.

f Snoke
c and f Andrews

c using the far-field spectra for symmetrical and asymmetrical source models (Figure 18).
Since both the Snoke and Andrews methods depend on the integral of the square of the velocity, the
variations of the corner frequencies over the focal sphere resemble that of the scaled energy (e.g., compare
Figures 18b, 18c, and 11b). We also find that the Snoke method provides the best estimate of the intersec-
tion of the low- and high-frequency asymptotes, whereas the Andrews method systematically yields lower
fc values (e.g., Figure 17a), consistent with the conclusion of Dong and Papageorgiou [2002a]. Furthermore,
for all the symmetrical source models, the Snoke method is less dependent on the takeoff angle than is the
spectral-fitting method (e.g., compare Figure 4a and Figure 18a).

For the Snoke method, the relations between the spherical average of P and S corner frequencies and the
source radius are found as

f̄ p
c = kp

Snoke

𝛽

a
= 0.38

𝛽

a
(36)

f̄ s
c = ks

Snoke

𝛽

a
= 0.36

𝛽

a
(37)
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Figure 18. Variations of P and S corner frequencies calculated using the objective definition of Snoke [1987] for (a) the
symmetrical circular model with Vr = 0.9𝛽 and (b) the asymmetrical circular model with Vr = 0.9𝛽 . (c) The same
as Figure 18b, but the corner frequencies are calculated using the objective definition of Andrews [1986]. The pat-
terns of fc over the focal sphere for the Snoke and Andrews methods are similar, although the Andrews method yields
systematically smaller fc.

for the symmetrical circular source with the rupture speed Vr = 0.9𝛽 . The equivalent relations for the
asymmetrical circular source with the rupture speed Vr = 0.9𝛽 are found as

f̄ p
c = kp

Snoke

𝛽

a
= 0.29

𝛽

a
(38)

f̄ s
c = ks

Snoke

𝛽

a
= 0.29

𝛽

a
. (39)

The values of kp
Snoke and ks

Snoke for all the source models reported in Table 1 agree well with kp and ks

estimated by the spectral-fitting method, despite that the fact that the fall-off rates vary over the focal
sphere and do not generally satisfy n = 2 as assumed in the Snoke method (e.g., Figure 6b). As Snoke [1987]
originally argued, the Snoke method provides a relatively robust way to estimate the stress drop Δ𝜎, given
that Δ𝜎 is proportional to Ω0k3

Snoke = J∕Ω0 instead of Ω0k3 and that f p
Snoke and f s

Snoke are less dependent
on the takeoff angle. However, since the Snoke or Andrews methods are related to radiated energy
(J in equation (33)), one does not have separate estimates of stress drop and radiated energy to compute
radiation efficiency, implying a constant value of radiation efficiency among different earthquakes when
their source geometries and rupture speeds are unknown. Note also that there may be the problem of
inadequate bandwidth in applying the Snoke method to real data.

9. Conclusions

Using simulations of dynamic rupture and the seismic representation theorem, we have computed far-field
body wave spectra derived from source models with different source geometries, rupture directivity,
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and rupture speeds. For each source scenario, the characteristics of displacement spectra, their corner
frequencies, scaled energy, and other source parameters have been reported. Compared to the symmetrical
circular models of Kaneko and Shearer [2014], the asymmetrical models show (i) a stronger azimuthal
dependence due to the asymmetry of the rupture evolution, resulting in much larger variability of estimated
corner frequencies and scaled energy over the focal sphere, (ii) generally smaller values of spherical averages
of P and S wave normalized corner frequencies kp and ks, (iii) a roughly constant ratio kp∕ks over a range
of rupture speeds, and (iv) a larger ratio of S-to-P radiated energy.

We have further explored the effects of supershear rupture on the resulting corner frequencies using
elliptical source models. Symmetrical elliptical models exhibit an asymmetry of corner frequencies over
the focal sphere due to the ellipticity of the source, which is greatly enhanced in models with a supershear
rupture speed. Models with a faster rupture speed result in shorter durations of the displacement pulses
and hence larger corner frequencies. The spherical average of the spectral fall-off rates remains roughly the
same over a wide range of rupture speeds. Overall, the general behavior of the spherical average of corner
frequencies in the subshear regime extends to the supershear regime.

However, there are differences in corner frequencies, scaled energy, and other source parameters for
subshear and supershear ruptures, which are pronounced by directivity effects. Far-field displacements and
spectra at some azimuth are influenced by shear Mach waves generated by the propagation of supershear
rupture, resulting in different characteristics of the displacement pulses and patterns of corner frequencies
over the focal sphere, and the ratio of P-to-S corner frequencies. Shear Mach waves lead to much higher
corner frequency and scaled energy estimates locally, and as a result, up to a factor of 6–7 differences in
corner frequencies can be seen over the focal sphere. The ratio of S-to-P radiated energy increases with the
rupture speed in the subshear regime, whereas the ratio decreases with increasing rupture speed in the
supershear regime.

From the source scenarios we have considered, we conclude that at least a factor of 2 difference in the
spherical average of corner frequencies is expected in observational studies simply from variability in source
geometry, rupture directivity, and rupture speeds, translating into a factor of 8 difference in estimated
stress drops. Uncertainty in stress drop estimates due to unknown geometry and rupture speed also affects
estimation of radiation efficiency. Our results further suggest that the large dependence of corner
frequencies and scaled energy on takeoff angle relative to the source, which can be pronounced by rupture
directivity, suggests that measurements from a small number of seismic stations are unlikely to produce
unbiased estimates of spherically averaged corner frequency and energy. Furthermore, for asymmetrical
ruptures, estimation of radiation efficiency may be less dependent on takeoff angle than either that of
radiated energy or stress drop. However, accurate radiation efficiency estimates require independent
constraints on the rupture speed and geometry.

Given the potential issues with stress drop and scaled energy estimates discussed in this work, one approach
to better resolve earthquake source properties would be to observe the variations of corner frequencies
or radiated energy over the focal sphere and relate them directly to theoretical models. For example, for a
region with a dense seismic network, corner frequency variations over the focal sphere could be used to
estimate how an earthquake source differs from a standard symmetrical circular model. Different patterns
of corner frequencies or scaled energy over the focal sphere may provide additional insights into the
complexities of earthquake source processes.

Appendix A: Stress Drop for an Elliptical Source

Stress drop for an elliptical source with the major and minor axes a and b can be derived from Eshelby [1957].
For a Poissonian solid (i.e., 𝜈 = 0.25), Madariaga [1977] evaluated expressions for the stress drop in terms of
the seismic moment (or average slip):

Δ𝜎 =
M0

C1Sb
, (A1)
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where M0 is the seismic moment, S is the source area, and the geometric parameter C1. For slip along the
major axis, C1 is given by

C1 = 4

3E(m) + 1
m2 (E(m) − b2

a2 K(m))
, (A2)

where m = (1 − b2∕a2)1∕2 and K(m) and E(m) are complete elliptical integrals of the first and second
kinds, respectively [Eshelby, 1957; Madariaga, 1977]. We use equation (A1) to calculate stress drop for all the
elliptical source scenarios.

Appendix B: Numerical Damping: Kelvin-Voight Viscosity

The Kelvin-Voight viscosity we use is artificial in the sense that it is part of the numerical procedure for
solving the perfectly elastic problem and is not intended to represent physical damping. The purpose of the
Kelvin-Voigt viscosity is to damp spurious oscillations generated by the fault slip at frequencies that are too
high to be resolved by the mesh [e.g., Day et al., 2005]. The viscosity 𝜂 depends on the size of the elements
on the fault and must be a small fraction of the critical time step in an elastic medium for the average linear
size of the elements on the fault plane [e.g., Ampuero, 2002; Kaneko et al., 2008]. Unless noted otherwise,
we set 𝜂 = 0.1Δt, where Δt is the time step used in a simulation. Values substantially larger than this value
visibly degrade the sharpness with which shear stress is resolved at the rupture front.
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