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Chapter 12
Seismic Detections of Small-Scale 
Heterogeneities in the Deep Earth
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Abstract We report the detection of coherent scattered energy related to the 
phase PKPPKP (P′P′) in the data of medium aperture arrays. The scattered 
energy (P′•P′) is weak and requires array processing techniques to extract the 
signal from the noise. The arrival time window of P′•P′ is mostly free from other 
interfering body wave energy and can be detected over a large distance range. 
P′•P′ has been detected in the data of large aperture arrays previously, but the 
detection in the data of smaller arrays shows its potential for the study of the 
small-scale structure of the Earth. Here, we show that P′•P′ can detect scattering 
off small-scale heterogeneities throughout the Earth’s mantle from crust to core 
making this one of the most versatile scattering probes available. We compare 
the results of P′•P′ to a related scattering probe (PK•KP). The detected energy is 
in agreement with stronger scattering, i.e., more heterogeneous structure, in the 
upper mantle and in an approximately 800-km-thick layer above the core–man-
tle boundary. Lateral variations in heterogeneity structure can also be detected 
through differences in scattered energy amplitude. We use an application of the 
F-statistic in the array processing allowing us a precise measurement of the inci-
dence angles (slowness and backazimuth) of the scattered energy. The directivity 
information of the array data allows an accurate location of the scattering origin. 
The combination of high-resolution array processing and the scattering of P′•P′ 
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as probe for small-scale heterogeneities throughout the Earth’s mantle will  provide 
constraints on mantle convection, mantle structure, and mixing related to the sub-
duction process.

Keywords Seismic scattering · Small-scale heterogeneity · Mantle mixing ·  
Array seismology · Core–mantle processes

12.1  Introduction

Seismology aims to resolve structures on a wide variety of scale lengths from 
structures spanning several thousands of kilometers studied using earthquakes and 
tomographic techniques to the fine-scale structures resolved in industrial-style con-
trolled source experiments allowing the resolution of structures on scales of just 
a few tens of meters (Fig. 12.1). The impressive high resolution of near-surface 
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Fig. 12.1  Scale length sensitivity of different seismic probes for Earth structure. Seismic tomog-
raphy resolves structures on a scale of a few hundred to a few thousand kilometers. Detailed 
waveform analysis using networks and arrays gives higher resolution information about Earth 
structure on scales as short as a few tens of kilometers. Scattering is sensitive to structure on the 
order of the seismic wavelength, which can reach a few kilometers in the short-period wavefield. 
Large-scale controlled source experiments can reach much higher resolution in the crust, but are 
impractical for studying the Earth’s deep interior
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controlled source experiments will likely always be beyond what can be achieved 
using global earthquake data, and only under particular circumstances is earth-
quake seismology able to resolve structures in the Earth’s interior on scale lengths 
of tens of kilometers. On the other hand, geochemical analysis of mantle and crus-
tal material typically reports heterogeneities in structure on scales as small as 10 m 
or less (Albarede 2005), while mineral physical studies report heterogeneities on 
scales comparable to the grain size and below (Stixrude and Lithgow-Bertelloni 
2012). Clearly, there is a large discrepancy between the structures resolved by 
these disciplines studying the Earth’s interior. Our understanding of the processes 
acting in the deep Earth and the dynamics and evolution of our planet is severely 
hampered by these fundamental differences in resolution.

Over the last few decades, global earthquake seismology has been very suc-
cessful in mapping 3D deviations from the radially averaged 1D velocity structure 
that was established since the mid-twentieth century (Jeffreys and Bullen 1940; 
Bullen 1949; Dziewonski and Anderson 1981; Kennett and Engdahl 1991). These 
tomographic studies use the inversion of travel times (and to lesser extent wave-
forms) of seismic energy traveling along ray paths determined by the large-scale 
seismic velocity structure (Woodhouse and Dziewonski 1984). Nonetheless, the 
seismic wavefield, especially at higher frequencies, shows evidence for seismic 
energy not following the ray paths prescribed by the radial or large-scale seismic 
velocity structure. This energy, which is scattered into directions off the source–
receiver plane at small-scale velocity or density variations, is most evident in the 
coda following the main arrivals or in dominant energy preceding certain arrivals. 
Codas trail the ray path traveling energy for several 10–100 s (Astiz et al. 1996; 
Rost et al. 2006) due to the longer path travelled by the scattered energy and seem 
to be incoherent between individual stations. Scattering at small-scale heterogenei-
ties is dominant in the crust, and analysis of the coda of direct waves has widely 
been used to study crustal and lithospheric structure (Aki 1969; Korn 1988; Sato 
1988). Nevertheless, seismic scattering has been shown to be a useful tool for 
studying the fine-scale structure of the Earth’s deep interior (Shearer 2007).

Plate tectonics is constantly producing chemical heterogeneity through the 
generation of oceanic crust and the residual depleted mantle material, together 
forming the oceanic lithosphere, at mid-oceanic ridges and the subsequent recy-
cling of the lithosphere into the Earth’s mantle at subduction zones. The chemical 
heterogeneity between the crustal and mantle parts of the lithosphere is obvious 
from seismic studies of the crust, and seismic tomography indicates that the sub-
ducted material is traveling through the upper mantle, entering the lower mantle 
(Van der Hilst et al. 1991; Christensen and Hofmann 1994; Widiyantoro and Van 
der Hilst 1997; Li et al. 2008; McNamara and Zhong 2005; Tan and Gurnis 2005), 
although some slabs may remain in the upper mantle and transition zone (Fukao 
et al. 2009). The subducted material is likely slowly mixed into the ambient mantle 
(Allègre and Turcotte 1986; Olson et al. 1984) or might collect in larger volumes 
as indicated by tomographic studies and geodynamic modeling (Christensen and 
Hofmann 1994; McNamara and Zhong 2005). The mixing of the chemical hetero-
geneities of the subducted slabs likely leads to chemical heterogeneities throughout 
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the mantle. We expect a range of scale lengths for the heterogeneities based on the 
vigor of the mantle convection and the residence time of the heterogeneity (Olson 
et al. 1984). Such different scale lengths have been detected in seismic studies as 
discussed below. Geochemical and mineral physical analysis of surface samples 
have provided some evidence for this process, but the imaging of their structure in 
situ is essential for our understanding of the evolution, composition, and dynam-
ics of the mantle. Analysis of the scattered seismic wavefield seems a good tool to 
detect, characterize, and map the chemical heterogeneities in the mantle and a start 
in closing the gap between seismology and other deep Earth geodisciplines.

The heterogeneities in the Earth’s deep interior are likely much weaker than 
those found in the crust, and separating the weak scattering from the Earth’s inte-
rior from the effects of the seismic wavefield traveling through the strong het-
erogeneities of the lithosphere beneath the station is difficult. Some parts of the 
seismic wavefield (Fig. 12.2) are particularly suited to studying deep Earth scat-
tering. For these specific ray geometries, the scattered energy from the deep Earth 
can arrive as precursors to the main arrival traveling in the source–receiver plane 
and is therefore separated from the lithospheric scattering that dominates the coda 
after the main arrival. Therefore, these seismic phases provide valuable probes for 
examining the small-scale structure of the Earth’s interior, as discussed in the next 
section. Here, we focus on scattering related to the P-wavefield. Although scatter-
ing has also been detected in a limited number of S-wave studies (Shearer 2007), 
their ability to detect the fine-scale structure of the Earth is limited due to the 
typically longer periods of teleseismic S-waves compared to P-waves, making the 
probes sensitive to different scale lengths.

Fig. 12.2  Travel-time 
curves of common seismic 
body waves and theoretical 
time distance regions for 
several scattering probes: 
1 P-coda, 2 Pdiff coda, 3 
asymmetric PP precursors, 
4 PK•KP (precursors), 5 
PKP precursors, 6 PKKP 
precursors, 7 P′P′ precursors, 
8 PKiKP coda, 9 symmetric 
PP precursors 10 P′•P′. After 
Shearer (2007)
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12.2  Scattering Probes

Due to the weak heterogeneity in the lowermost mantle compared to the litho-
sphere and the related change in the amplitude of the scattered energy, it is impor-
tant to be able to separate the energy coming from these two scattering regions. 
To this end, several probes have been developed since the 1970s that allow good 
sampling of the lower mantle and close to the CMB.

12.2.1  PKP Precursors

PKP is a compressional wave that travels from the earthquake to the station as 
a P-wave through the mantle and core. The seismic velocity reduction at the 
CMB leads to a specific ray geometry where energy from the PKPbc and PKPab 
branches, which travel through the outer core, is scattered close to the CMB 
and arrives as precursory energy to the PKP branch traversing the inner core 
(PKPdf). Ray paths for these branches are shown in Fig. 12.3a. Only scattering 
from heterogeneities in the deep Earth will arrive as PKPdf precursors. Due to 
the location of the PKP b-caustic, the point where the PKPbc and PKPab paths 
merge, scattering up to approximately 1200 km above the CMB will produce pre-
cursors to PKPdf arriving up to 18 s before PKP and in an epicentral distance 
range from 118° to approximately 145°. These high-frequency arrivals have long 
been observed in the seismic wavefield (Gutenberg and Richter 1934), and their 
scattering origin was identified by Cleary and Haddon (1972). They have been 
used extensively to study scattering at the CMB to infer the structure of small-
scale heterogeneities in the D″ region (Doornbos and Husebye 1972; Doornbos 
and Vlaar 1973; King et al. 1976; Bataille and Flatte 1988; Bataille et al. 1990; 
Hedlin et al. 1997; Thomas et al. 1999; Cormier 2000; Hedlin and Shearer 2000; 
Margerin and Nolet 2003; Cao and Romanowicz 2007; Vanacore et al. 2010). 
Heterogeneities higher above the CMB will not create precursors to PKPdf but 
will lead to energy with a longer travel time arriving as postcursors in the PKPdf 
coda. These are more difficult to analyze due to the simultaneously arriving 
energy scattered in the crust leading to a certain ambiguity in results (Hedlin and 
Shearer 2002) making the study of mid- and upper-mantle heterogeneity with this 
probe difficult.

Results have been interpreted in terms of CMB topography (Doornbos 1978) 
or small-scale heterogeneity close to the CMB (Haddon and Cleary 1974). 
Heterogeneities have been found to consist of ~1 % root-mean-square (RMS) 
velocity variations at scale lengths of about 8 km in a layer of several hundred 
kilometers thick (Bataille and Flatte 1988; Hedlin et al. 1997), although there is 
some trade-off between the thickness and the heterogeneity strength and recent 
studies report a much smaller RMS variation (Mancinelli and Shearer 2013). 
Alternatively, the scattering has been attributed to CMB topography with RMS 
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height of ~300 m (Bataille et al. 1990). A second group of studies located discrete 
scatterers at the CMB rather than treating the scattering as a statistical process 
(Thomas et al. 1999; Frost et al. 2013). Resolving heterogeneities high above the 
CMB with PKP is challenging, but this gap can be closed using other phases as 
described below.
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Fig. 12.3  a Ray paths of PKP, PKiKP, PP, PKKP, P′P′, P/Pdiff, and PcP, all of which, have 
been used to study scattering in the Earth’s interior. Source (star) is located at 500 km depth, 
and receiving stations are indicated by inverted triangles. b Scattered ray path related to PKP, 
producing precursors to PKPdf, an often-used probe for lower mantle scattering. c Scattered ray 
path (dark solid) related to PKKP (light gray ray path) with a scattering point (B′) on the CMB at 
the PKKP CMB reflection point. Point B marks the surface projection of the scattering point B′. 
PK•KP scattered energy is traveling off-azimuth. The globe is cut along the PKKP ray path trave-
ling on-azimuth [i.e., along the great-circle path connecting source (A) with receiver (C)]. Please 
note that a second mirrored scattering point can be found in the lower hemisphere. d Scattered 
ray path (dark ray path) related to PKPPKP (P′P′) (light gray ray path). Scattering is indicated 
near the surface at point B, and the scattered energy is traveling off-azimuth. The globe is cut 
along the PKPPKP ray path traveling on-azimuth between source (A) and receiver (C). Please 
note that a second mirrored scattering point can be found in the lower hemisphere
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12.2.2  P and Pdiff Coda

At distances larger than about 98°, the direct P-wave starts to diffract around the 
low-velocity zone of the outer core (Fig. 12.3a). This diffracted energy is typi-
cally called Pdiff and can be observed, in the high-frequency seismic wavefield, out 
to at least 115°, although it might disappear earlier (Astiz et al. 1996; Rost et al. 
2006) and some observations out to 130° have been reported likely due to wave 
guide effects (Bataille et al. 1990; Earle and Shearer 2001). Pdiff is often followed 
by long coda energy trailing the main arrival for several hundred seconds (Astiz 
et al. 1996; Rost et al. 2006). At large ranges, the arrivals seem emergent, reach-
ing maximum amplitudes up to tens of seconds after the main P or Pdiff arrival. 
The length of the coda and its emergent onset support the interpretation of the 
Pdiff coda originating from multiple scattering along the diffracted path (Bataille 
et al. 1990). A global stack of short-period seismograms from shallow events by 
Earle and Shearer (2001) found evidence for 1 % RMS velocity variations on scale 
lengths of 2 km, smaller than generally resolved by PKP studies. Strong regional 
variations in the strength of the coda have also been observed (Rost and Thorne 
2010) indicating lateral variations in scattering strength.

12.2.3  PKKP and P′P′

Core phases other than PKP have been used to study scattering in the deep Earth. 
Scattering related to PKKP, a core phase reflected once off the underside of the 
CMB (Fig. 12.3a), has been identified in several distance ranges. Early studies 
identified precursors to PKKPdf between ~80° and 125° (Doornbos 1974; Earle 
and Shearer 1997) and have been interpreted as scattering at the CMB entry or exit 
points (PKK•P or P•KKP, where • denotes the location of the scattering along the 
ray path). The scattering process is analogous to the scattering of PKPbc or PKPab 
leading to PKPdf precursors as described above with an additional reflection of the 
energy from the underside of the CMB. In the case of PKKP, most studies point 
toward scattering from small-scale CMB topography or roughness with amplitudes 
of 250–350 m on lateral scales of 7–10 km (Earle and Shearer 1997). PKKP scat-
tering at distances shorter than 80° has also been detected in global stacks (Earle 
and Shearer 1998). The origin of this energy has later been identified as scattering 
of P to PKP (P•PKP) at the Earth’s surface (Earle 2002).

An additional scattering mechanism for PKKP has been identified by Earle 
(2002) as scattering of PKKP at the CMB reflection point (PK•KP). This scatter-
ing is related to off-azimuth scattering of PKKPbc off volumetric heterogeneities at 
or above the CMB (Fig. 12.3c). This scattering geometry has been used to map lat-
eral heterogeneities of scattering strength at the CMB and to find evidence for dis-
crete heterogeneities likely related to subduction processes and heterogeneities at 
the edges of the large low shear velocity Provinces (LLSVPs) beneath the Pacific 
and Africa (Rost and Earle 2010).
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PKPPKP (P′P′) is similar to PKKP as it is an underside reflection off 
the Earth’s surface (Fig. 12.3a), while PKKP is an underside reflection off the 
CMB. Scattering related to P′P′ has been identified in near-podal array data 
(Tkalčić et al. 2006), and its timing indicates a source in the upper mantle between 
150 and 220 km depth.

It has been shown that the time window from 2200 to 2500 s after the earth-
quake origin time for distance ranges of 30°–50° contains scattered energy related 
to the phase P′P′. Earle et al. (2011) identify this energy as off-great-circle path 
scattering of PKPbc to PKPbc (P′•P′). The travel time of P′•P′ is dependent on the 
scattering depth (Fig. 12.4) with energy scattered closer to the CMB arriving ear-
lier in the seismogram (Earle et al. 2011). This makes P′•P′ an ideal probe to study 
small-scale heterogeneity from crust to core and a good supplement to scattering 
studies using PKP for which energy scattered at heterogeneities more than about 
1000 km above the CMB arrives in the PKPdf coda, making the analysis of this 
energy more complex (Hedlin and Shearer 2002). With this scattering mechanism, 
PK•KP is an extreme example of lowermost mantle scattering of P′•P′ explaining 
the sensitivity of PK•KP to structure above the CMB. Here, we show evidence for 
mapping of whole mantle scattering using P′•P′ in the next section.

12.2.4  Other Probes (P, PcP, PP)

Other phases have been used to delineate heterogeneities at different depths 
throughout the Earth. Arrivals in the P-coda, identified as S-to-P conversions 
close to the source or P-to-P scattering off azimuth, have been used to map struc-
ture in the mid-mantle through analysis of array data (Castle and Creager 1999; 
Kaneshima and Helffrich 1999, 2003; Kaneshima 2009; Kaneshima et al. 2010; 
Kito et al. 2008). These detections are generally in the vicinity of current or recent 
subduction, outlining the penetration of slabs into the lower mantle and the recy-
cling or deposition of crustal material in the lowermost mantle.

A similar result has been obtained by studying precursors to PP. The PP pre-
cursor wavefield shows evidence for symmetric reflections off the upper-mantle 
discontinuities (Shearer 1990) and for asymmetric reflections off the surface 
or uppermost mantle (Wright 1972; King et al. 1975; Weber and Wicks 1996). 
Asymmetric off-azimuth reflections off slab material arriving as PP precursors 
have been identified beneath the Mariana and Izu-Bonin subduction zones (Rost 
et al. 2008; Bentham and Rost 2014), outlining deep subduction beneath these 
subduction zones and the transport of oceanic crust far into the lower mantle. 
Other phases such as PcP have been used to image lower mantle structure through 
the analysis of P-to-P and S-to-P scattering (Braña and Helffrich 2004).

The outer core seems well mixed and does not show evidence for scattering 
away from the boundaries between mantle and core (CMB) and inner and outer 
core (ICB). On the other hand, there is strong evidence from the analysis of 
P-waves traversing the inner core for scattering in the inner core indicating het-
erogeneities of up to 1.2 % in velocity and scale lengths of 2 km in the outermost 
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300 km (Cormier 2007; Koper et al. 2004; Leyton and Koper 2007; Poupinet and 
Kennett 2004; Rost and Garnero 2004; Vidale and Earle 2000; Vidale et al. 2000). 
These heterogeneities are likely due to inclusion of melt in the solid core, com-
positional changes, or changes in the anisotropy of the core material (Vidale and 
Earle 2000).

12.3  P′•P′/PK•KP and Earth Structure

Scattering related to P′P′ (P′•P′) has been identified in data of the Large Aperture 
Seismic array (LASA), an array of up to 625 station with an aperture of 200 km 
that operated in Montana from 1965 to 1978 (Earle et al. 2011). The energy, arriv-
ing at epicentral distances of 30°–50° and at times between 2300 and 2450 s after 
the earthquake origin, has been interpreted as off-azimuth scattering of PKPbc 
to PKPbc (Earle et al. 2011). The scattered energy recorded at the array shows a 
distinct off-azimuth energy pattern similar to the precursors to PKKP described 
earlier (Earle 2002; Rost and Earle 2010). Note that P′•P′ differs from P′P′ pre-
cursors (Fig. 12.2), which are related to underside reflections off discontinuities 
and through scattering at the surface reflection point and arrive primarily along the 
great-circle path (Cleary and Haddon 1972; Haddon et al. 1977; Chang and Cleary 
1981; Cleary 1981; Tkalčić et al. 2006). The energy of P′•P′ travels off-azimuth 
(i.e., the azimuth connecting source and receiver) around the inner core leading to 
up to two characteristic energy peaks (depending on the existence of heterogene-
ity in the potential scattering region) with nonzero transverse and radial slowness, 
indicating a CMB, lower mantle, or outer-core origin (Fig. 12.5a). The character-
istic energy pattern derived using ray theory can also be identified in simulations 
of global seismic scattering. Figure 12.5b, c shows examples of scattered energy 
in a time window from 1950 to 2000 s for distance ranges of 30°–35° (Fig. 12.5b) 
and 40°–45° (Fig. 12.5c). Synthetics are calculated using a multiple scattering, 
Monte-Carlo phonon scattering approach (Shearer and Earle 2004), and the result-
ing energy peaks are in good agreement with the ray theoretical calculations (Earle 
et al. 2011).

Here, we detect the energy related to P′•P′ in data of the medium aperture 
array in Yellowknife (YKA) located in northern Canada. YKA consists of 18 
short-period, vertical stations deployed along two perpendicular north–south 
and east–west oriented legs. The maximum aperture of the array is 20 km with 
an interstation spacing of 2.5 km. YKA was designed to detect high-frequency 
P-waves from underground nuclear explosions (Manchee and Weichert 1968; 
Weichert and Whitham 1969) and is therefore well suited to study the scattered 
P-wavefield. Additionally, YKA contains 4–5 three-component broadband seis-
mometers, but the data from these instruments are not being used in this study. 
Earle et al. (2011) identified P′•P′ in data from LASA consisting of more than 
600 seismometers and with an aperture of up to 200 km (Frosch and Green 1966; 
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Green et al. 1965). LASA therefore has much better resolution in wave number 
space and provides greater improvements in the signal-to-noise ratio of coherent 
arrivals. Here, we show the capability of smaller arrays to detect P′•P′, opening up 
many more opportunities to use this energy to study Earth structure. Further test-
ing will see whether smaller arrays than YKA (with apertures of 3–10 km, which 
have been built as part of the Comprehensive Test Ban Treaty) are able to detect 
the weak scattered energy related to P′•P′.
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To enhance detection of coherent signal power in the stacked array data and 
increase resolution in slowness space, we apply the F-statistic to the array beams 
(Selby 2011; Frost et al. 2013). To detect the weak scattered energy related to 
P′•P,′ we perform a grid search over slowness (ranging from 0 to 13 s/°) and 
backazimuth (from 0° to 360°). For each slowness/backazimuth combination, we 
form the array beam and apply the F-statistic, which is a dimensionless meas-
ure of the beampower divided by the variability (difference) between the beam 
and each individual trace contributing to the beam average over a time window 
of specified length. The maximum amplitude of this F-trace is then measured 
in a time window representing a specific scattering depth as discussed below. 
The resulting slowness/backazimuth F-trace beampower maps (F-packs) indi-
cate the slowness and backazimuth of the incoming energy with high precision 
(Frost et al. 2013). The use of the F-statistic penalizes energy traveling with inci-
dence angles other than the one the beam is calculated for, therefore sharpening 
the array response function and the wave number resolution of the array, while 
improving the signal-to-noise ratio of the energy traveling along the correct slow-
ness vector.

We selected a small dataset of events with magnitude larger than 6.5 and good 
signal-to-noise ratio from the YKA data holdings (Fig. 12.6). Most earthquakes 
form two groups located beneath Kamchatka and Central America. We apply the 
F-trace stacking approach to 50-s time windows of the YKA data. Each time win-
dow represents an approximately 200-km-thick layer in the Earth. We move our 
analysis from the surface to the CMB (see Table 12.1 for chosen time windows). 
As can be seen in Fig. 12.4, each of these time slices represents scattering from a 
specific depth, making P′•P′ an ideal probe to study the small-scale heterogeneity 

1

2

YKA

Fig. 12.6  Location of events (stars) analyzed in this study. The events fall into two general 
areas with events beneath Kamchatka and Central America. Diamonds show scattering regions 
of example event (January 28, 2002, 13:50) shown in Fig. 12.7 with the green diamond marked 1 
showing the location in the deep mantle and the upper mantle scattering point is shown as green 
circle marked 2
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from crust to core. The scattered energy from all these time windows arrives in a 
quiet time window with few interfering phases (PKKKP, with two CMB under-
side reflections, is the only major phase arriving in the P′•P′ scattering time win-
dow, also see Figs. 12.2 and 12.4 and might be visible as on-azimuth arrival in the 
200–400 km and 400–600 km depth slices in Fig. 12.8). Figures 12.7 and 12.8 
show the resulting energy maps for the packed F-beams for the individual time 
windows for two example events. The energy maps show discrete and coherent 
P′•P′ arrivals for the upper mantle (down to depths of about 400 km) and in the 
lowermost mantle to depths of about 900 km above the CMB (below 2000 km 
depth) with slowness patterns that are in excellent agreement with the ray theo-
retical and phonon scattering synthetics. The example event in Fig. 12.8 shows the 
typical two-lobed scattered energy in the uppermost mantle slice. We interpret this 
energy as detection of P′•P′ in the YKA data. F-packs from the mid-mantle indi-
cate little scattered P′•P′ energy from depths of about 600–2000 km, as indicated 
by the absence of a focussed arrival (as, e.g., in the shallower depth slices) and 
a more incoherent wavefield indicating varying slowness and backazimuth in the 
processed time window. Tests with noise windows before the P arrival for these 
events show a random behavior of the energy maximum in these time windows, 
while the F-packs between 600 and 2000 km depth often show a predominant 
direction in agreement with scattering and outer core slowness, but indicating very 
low scattered energy. This might indicate that there is some scattered energy arriv-
ing in these time windows, but is much weaker than at the surface and in the lower 
mantle. Detailed modeling of this energy related to the YKA noise condition will 
lead to further insight into the strength of the heterogeneities at these depths but 
is beyond the scope of this study. The dataset studied here consists of seismicity 

Table 12.1  Minimum travel times for P′•d•P′ scattered phases for varying scattering depths for 
the one-dimensional Earth model PREM (Dziewonski and Anderson 1981)

Time indicates absolute travel time after the origin for a surface focus. Also given is the PKPb 
caustic distance for the appropriate scattering depth

Scattering depth (km) PREM

PKP caustic distance (°) Minimum P′dP′ travel time (s)

0 145.05 2353.48

200 144.59 2300.36

400 144.05 2252.28

600 143.38 2208.40

800 142.55 2167.90

1200 140.49 2090.36

1600 137.87 2014.08

2000 134.44 1938.04

2400 129.46 1854.36

2600 126.14 1809.50

2800 121.40 1756.14
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Fig. 12.7  F-packs, examples for the event January 28, 2002, 13:50 in the Kamchatka region 
recorded at YKA. Epicentral distance for this event is 47.7°. In each F-pack plot, slowness is 
shown on the radial and backazimuth of the incident energy on the azimuthal axes. Black cir-
cles indicate slowness at intervals of 2 s/°. Thick white circles indicate slowness of 1.9, 4.4, 
and 9.2 s/°, indicating energy originating from the inner-core boundary, core–mantle boundary, 
and 660-km discontinuity, respectively. Colors indicate beampower of the F-beams, with each 
panel being normalized individually. Focussed, high beampower (as in slices for 0–200 and 
200–400 km) indicates very coherent energy arriving from the related slowness and backazimuth, 
while distributed (non-focussed) energy from different slowness and backazimuths indicates 
the arrival of uncorrelated noise (as in slices from 400 to 2000 km depth). Dashed black lines 
indicate the theoretical backazimuth for this event of 297.9°. Depth slice time windows relate to 
Table 12.1, and the PKKP-labeled time window contains energy originating from the CMB (time 
window between 1651 and 1751 s)



beneath Kamchatka and Central America. We find that in general, the events in 
the Kamchatka region show evidence for scattering throughout most of the mantle 
(although with apparently weaker scattering in the mid-mantle), while the Central 
American events show only evidence for scattered energy from the upper man-
tle (see Fig. 12.9 for an example). This might indicate lateral variations in het-
erogeneity structure in the lower mantle as has been indicated before (Hedlin 
and Shearer 2000). Note that the lower mantle scattering (e.g., Fig. 12.7) shows 
different slowness and backazimuth parameters than the upper-mantle scattering 
in the same event. The different directivity for the scattered energy indicates dif-
ferent locations of the heterogeneities leading to the scattered energy. Using the 
slowness/backazimuth information and raytracing through a 1D Earth model 
allows us to infer the location of these heterogeneities. The lower mantle scatter-
ing originates from the edge of the large low shear velocity province (LLSVP) 
beneath Africa (scattering region 1 in Fig. 12.6 (see also Fig. 12.10)), a region 
of strong reductions in seismic velocities beneath Africa. Another LLSVP can 
be found beneath the Pacific, and combined, they form a strong degree 2 pattern 
of low velocities in most tomographic models (Garnero and McNamara 2008). 
Strong scattering from the edge of the LLSVP has been reported earlier (Wen 
2000; Rost and Earle 2010; Frost et al. 2013). On the other hand, we can relocate 
the near-surface scattering to a region beneath South America (scattering region 2 
in Fig. 12.6) where the upper mantle is strongly influenced by recent subduction. 
Several events from a similar source region support the detection of these scatter-
ing regions.

As shown in Figs. 12.7, 12.8 and 12.9, P′•P′ offers a unique opportunity to 
probe the mantle, from crust to core, for small-scale heterogeneities using scat-
tered waves. Due to the complex ray path of P′•P′ and the location of most seismic 
arrays on the Northern Hemisphere, we expect the best sampling with this probe 
on the Southern Hemisphere. This will be a good complement to previous stud-
ies probing for heterogeneities close to the CMB using PKP (Hedlin and Shearer 
2000).
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Fig. 12.8  F-packs, examples for the event March 02, 1992, 12:29 in the Kamchatka region 
recorded at YKA. Epicentral distance for this event is 43.2°. In each F-pack, plot slowness is 
shown on the radial and backazimuth of the incident energy on the azimuthal axes. Black cir-
cles indicate slowness at intervals of 2 s/°. Thick white circles indicate slowness of 1.9, 4.4, and 
9.2 s/°, indicating energy originating from the inner-core boundary, core–mantle boundary, and 
660-km discontinuity, respectively. Red colors show high beampower of the F-beams indicating 
very coherent energy arriving from the related slowness and backazimuth. Dashed black lines 
indicate the theoretical backazimuth for this event of 298.3°. Depth slice time windows relate to 
Table 12.1, and the PKKP-labeled time window contains energy originating from the CMB (time 
window between 1651 and 1751 s)

A special case of the energy related to P′•P′ is PKKP scattered energy from 
heterogeneities close to the CMB (PK•KP) as described above. This energy has 
been detected in both data from large aperture (Earle and Shearer 1997; Earle 
2002) and medium aperture (Rost and Earle 2010) arrays. It has been used to 
study the lateral variations of heterogeneities along the Earth’s CMB (Rost and 
Earle 2010). Figure 12.10 shows detected discrete scatterer locations for PK•KP 
from an earlier study (Rost and Earle 2010) and compares the locations with 
velocity variations derived from tomographic studies. The scatterer locations can 
predominantly be found at the edge of the African LLSVP, in agreement with 
other studies (Hedlin and Shearer 2000; Wen 2000; Frost et al. 2013) and beneath 
Central and South America. While the LLSVP region is seismically slow and has 
been interpreted as a thermochemical pile (McNamara and Zhong 2005), the other 
dominant scatterer region is characterized by fast seismic velocities (Fig. 12.10b). 
These regions are likely related to the long-lasting subduction beneath the 
Americas (Lithgow-Bertelloni and Richards 1998). Further scattering points, but 
much fewer than in these two regions, can be found in the Pacific LLSVP and in 
the circum-Pacific subduction ring. Together, the P′•P′ and PK•KP results indi-
cate a dynamic structure of the lower mantle, where convection flows redistribute 
small-scale heterogeneities.

The heterogeneities from the two dominating scattering areas beneath Africa 
and Patagonia are likely generated by different processes. Newly introduced sub-
ducted material is likely producing the heterogeneity beneath South America. The 
scattering area detected beneath Patagonia agrees well with the inferred location 
of the Phoenix plate at the CMB (Lithgow-Bertelloni and Richards 1998). Ultra-
low velocity zones (ULVZs), regions of strongly reduced seismic velocities at the 
CMB (Garnero 2000), have been predominantly found at the edges of LLSVPs 
(McNamara et al. 2010). Geodynamic modeling of the lowermost mantle indi-
cates that dense material is likely deposited at the edges of thermochemical piles 
in agreement with ULVZ detection (McNamara et al. 2010). It seems possible that 
the heterogeneities leading to scattering at the edge of the LLSVP beneath Africa 
are related to dense material swept to the edge of LLSVPs by the internal con-
vection currents of the LLSVPs. Detailed modeling of scattering from structures 
derived from geodynamic models might lead to better insight into these processes 
but is beyond the scope of this paper.
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Fig. 12.9  F-pack results for the event October 21, 1995, 02:38 in Central America recorded at 
YKA with an epicentral distance of 48° and a backazimuth of 151.86° (dashed line). F-packs 
are shown in larger slices running from 0 to 600 km (top left), 600 to 2000 km (top right), 2000 
to 2800 km (bottom left), and the PKKP time window (bottom right). F-packs are shown in the 
same way as in Fig. 12.7. Only the upper mantle time slice (top left) shows coherent scattering, 
while the other depth slices indicate mostly incoherent noise in contrast to the examples shown in 
Figs. 12.7 and 12.8
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Fig. 12.10  Scatterer locations (yellow circles) at the CMB as found in data from 2 medium aper-
ture arrays (red triangles) located in Canada (YKA) and India (GBA) (Rost and Earle 2010). a 
Background shows S-wave velocity at the CMB from Ritsema et al. (2011). b Background shows 
P-wave velocity variations from LLNL_G3Dv3 (Simmons et al. 2012)
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12.4  Conclusion

Scattering from small-scale heterogeneities in the Earth is evident in the short-
period seismic wavefield and provides us with the best opportunity to learn about 
the small-scale structure of the planet’s interior. Scattering has now been detected 
at most depths throughout Earth, with the well-mixed outer core currently being 
the only exception. Although many details of this small-scale structure remain 
poorly resolved, new probes to small-scale heterogeneities, as discussed in this 
work, offer the opportunity to gather more information about the fine structure of 
the Earth. The existence of strong scatterers close to the top and the bottom of the 
convecting mantle, i.e., close to the boundary layers of the convection system, is 
probably expected. Nonetheless, the data studied here provide constraints on the 
dominant flow in the mantle and the mixing processes that tend to homogenize the 
mantle (Olson et al. 1984).

This preliminary study of P′•P′ shows that the upper mantle and lower man-
tle produce strong scattering, while the scattering from the mid-mantle seems 
much weaker. There is also evidence for lateral variations in the heterogeneity 
structure as evidenced by the absence of scattering from the lower mantle in the 
Central American earthquakes. The heterogeneities leading to the scattering are 
likely compositional since the high thermal diffusivity in the solid mantle would 
equalize the thermal anomaly of a 10 km heterogeneity on the order of 200 kyrs 
(Helffrich and Wood 2001). An obvious source for the compositional heterogenei-
ties is the subduction process, continuously adding depleted and enriched crustal 
and lithospheric material to the bulk mantle, which has been identified as a possi-
ble source for seismic scattering (Helffrich and Wood 2001). Recent tomographic 
images show that subducting slabs in many regions do not penetrate the 660-km 
discontinuity and remain in the upper mantle and transition zone, while others 
continue to travel into the lower mantle therefore depositing chemical heteroge-
neities close to the CMB (Simmons et al. 2012). The upper mantle beneath South 
America has been found to be seismically fast indicating the existence of slab 
material being trapped in the upper mantle (Simmons et al. 2012). This is in good 
agreement with the strong scattering detected by P′•P′.

LLSVPs have been speculated to be either primordial or being recharged through 
the subducted crustal material (Garnero and McNamara 2008) although the latter 
has been questioned recently (Deschamps et al. 2012). Either model predicts strong 
structure in the LLSVPs related to the internal convection (McNamara et al. 2010). 
This is in good agreement with the laterally varying scattering strength close to the 
CMB as found in the PK•KP data. Although topography on the CMB has been used 
to explain the scattering in earlier studies (Doornbos 1978), it has been found that it 
cannot explain global PKKP scattering (Earle and Shearer 1997) and cannot explain 
the P′•P′ scattering located away from the CMB presented here.

The new probes to small-scale heterogeneities, P′•P′ and PK•KP, presented 
here and the rapid increase in dense array deployments will allow a systematic 
exploration of much of the Earth’s mantle for small-scale heterogeneities. Using 
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the seismic observations of scattering in the high-frequency wavefield and refined 
thermochemical convection models will provide further insight into the genera-
tion, distribution, and destruction of chemical heterogeneities from mixing pro-
cesses in the mantle.
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