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Abstract zhan et al. (2014a) reported supershear rupture during the M,, 6.7 aftershock of the 2013 M,, 8.3
Sea of Okhotsk deep earthquake, relying heavily on the regional station PET, which played a critical role in
constraining the vertical rupture dimension and rupture speed. Here we include five more regional stations and
find that the durations of the source time functions derived from these stations are consistent with Zhan et al.’s
supershear rupture model. Furthermore, to reduce the nonuniqueness of deconvolution and combine the
bandwidths of different stations, we conduct a joint inversion of the six regional stations for a single broadband
moment-rate function (MRF). The best fitting MRF, which explains all the regional waveforms well, has a
smooth shape without any temporal gaps. The M,, 6.7 Okhotsk deep earthquake is more likely a continuous
supershear rupture than a dynamically triggered doublet.

1. Introduction

While most earthquakes’ rupture speeds (V,) are less than the local shear wave (Vs) or Rayleigh wave speeds
(VR), supershear ruptures (i.e., V, > Vs) have been reported for several shallow strike-slip earthquakes (e.g.,
1979 Imperial Valley, 1999 Izmit, 2001 Kunlun, 2002 Denali, 2010 Yushu, and 2013 Craig earthquakes)
[Archuleta, 1984; Bouchon et al., 2001; Bouchon and Vallée, 2003; Dunham and Archuleta, 2004; Walker and
Shearer, 2009; Vallée and Dunham, 2012; Wang and Mori, 2012; Yue et al., 2013]. Observations and understand-
ing of supershear ruptures have important implications for seismic hazard and earthquake dynamics
[Dunham et al., 2003; Xia et al., 2004; Dunham, 2007; Das, 2010; Mello et al., 2010; Schmedes et al., 2010]. For
example, Gabuchian et al. [2014] show that upward supershear rupture on a thrust fault would enhance
the ground shaking by a factor of 2 to 3. Although the physics and conditions of the transition from subshear
(V, < Vs) to supershear rupture are not yet fully understood, previous observations and theoretical studies
indicate that high prestress and high seismic efficiency (e.g., a simple fault geometry) help promote super-
shear rupture [Zhang and Chen, 2006; Bouchon et al., 2010; Kaneko and Lapusta, 2010].

The physical mechanism of earthquakes deeper than 300 km is still enigmatic, and the rupture speeds of
deep earthquakes appear highly variable [Frohlich, 2006; Houston, 2007]. For example, the two largest
deep earthquakes recorded by modern seismological networks, the 1994 M,, 8.2 Bolivia and 2013 M,,
8.3 Sea of Okhotsk earthquakes, have rupture speeds of ~0.3Vs and ~0.7Vs, respectively [Kikuchi and
Kanamori, 1994; Silver et al., 1995; Antolik et al., 1996; Ihmlé, 1998; Wei et al., 2013; Ye et al., 2013; Chen
et al,, 2014; Meng et al., 2014; Zhan et al., 2014b]. Kuge [1994] inferred that the 1990 M,, 7.1 Sakhalin deep
earthquake ruptured at a supershear speed. By studying the P wave directivity effect at both teleseismic
and regional stations, Zhan et al. [2014a] showed that supershear rupture (V,=8km/s~1.4Vs, local
Vs~ 5.5 km/s) occurred during the 24 May 2013 M,, 6.7 Okhotsk earthquake (depth =642 km), the largest
aftershock of the M,, 8.3 Okhotsk event. More specifically, the event ruptured downdip along a steep fault
plane dipping at 70° in the SE direction, with a rupture azimuth of about 130°. The horizontal and vertical
rupture dimensions are 4km and 11 km, respectively. The supershear rupture speed indicates highly
efficient seismic radiation (i.e., radiation efficiency 5z~ 1), which contrasts strongly with the nearly zero
radiation efficiency during the Bolivia earthquake (g < 0.036) [Kanamori et al., 1998], suggesting more
than one rupture mechanism for deep earthquakes [Zhan et al., 2014a].

In this paper, we extend the work of Zhan et al. [2014a] to address two key questions: (1) The only
regional station used in Zhan et al. [2014a] is station PET (Figure 1); its longer source time function
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Figure 1. Map of the regional seismic stations (blue triangles). The 2013 Okhotsk M,, 8.3 main shock and M,, 6.7 after-
shock are displayed as the black and red beach balls, respectively. The red star connected to the smaller beach ball
represents the M,, 4.3 EGF event used in this study. Slab contours from the Slab 1.0 model are shown as dashed lines
[Hayes et al., 2012].

(STF) duration than those of the teleseismic stations is largely what constrains the steeply dipping fault
geometry and high rupture speed. Would additional regional stations confirm the supershear rupture
model? (2) Can we distinguish between a continuous supershear rupture and a doublet with two well-
separated subevents? A second subevent dynamically triggered by P waves from the first subevent
could produce high apparent rupture speed, and this possibility is an important issue because a signifi-
cant gap in the STF of station PET can be interpreted as two distinct subevents [Zhan et al., 2014al.
However, the nonuniqueness of deconvolution with narrow-band empirical Green'’s functions (EGFs)
limits the robustness of results from a single station. The teleseismic stations provide little additional
information regarding the detailed rupture process because their STFs are strongly compressed by the
downward rupture directivity and also lack high-frequency energy due to attenuation.

In this paper, we include more regional stations to answer these two questions. Besides the PET station
openly available from the Incorporated Research Institutions for Seismology Data Management Center,
we obtained data from five more broadband regional stations operated by the Kamchatkan Branch of
Geophysical Survey of Russian Academy of Science (Figure 1). All six stations recorded the M,, 6.7 event
and its M 4.3 aftershock (Figure 2), which serves as the EGF event to correct for path effects. In the next
two sections, we will first repeat the procedures for station PET to estimate the STF durations and test
whether they are consistent with the supershear rupture model. Then we will take advantage of the
broadband signals at multiple stations to estimate a robust broadband moment-rate function (MRF) to
address the question of continuous rupture versus a dynamically triggered doublet.

2. Source Time Function Durations

Observed seismograms at the regional stations are convolutions of source and path effects. In particular,
wave diffraction along the high-velocity subducting slab produces significant complexities in the
upgoing seismic wavefield. For example, P waveforms of the M,, 4.3 event at stations KRM and APC
display double arrivals separated by 0.5-1.5s, which are likely caused by multipathing of the upgoing
ray paths (Figure 2). To separate the source parameters from the path effects, we use the waveforms
of the M,, 4.3 aftershock as empirical Green’s functions (EGFs). Zhan et al. [2014a] have demonstrated
that the M,, 4.3 event is an ideal EGF event, with small moment but similar depth and focal mechanism
as the M,, 6.7 earthquake.
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Figure 2. Regional seismic waveforms and deconvolution. The three columns display vertical-component seismograms of
the M,, 6.7 earthquake, EGFs, and the deconvolved STFs. To ensure high signal-to-noise ratios and enhance high-frequency
energy, we use broadband acceleration seismograms. The black and red traces in the first column are the data and pre-
dictions, respectively. The two numbers beneath the station names are azimuths and distances in degrees. In the third
column, we show the STF durations defined by the red shading, which includes most of the energy. In the bottom three
rows, we display the deconvolution of acceleration (OKHa), velocity (OKHv), and displacement (OKHd) records of station
OKH. For OKH, to avoid the long-period noise in the observed EGF seismograms (blue traces), we use synthetic Green’s
functions (sGF, black traces) calculated with the 1-D velocity model shown in Figure 4.

Following the same procedures as in Zhan et al. [2014a], we derive the STFs x(t) by deconvolving the
EGFs u(t) from the M,, 6.7 earthquake waveforms w(t) with an optimization-based method in the time
domain. The convolution

u(t)*x(t) = w(t)
where * is a convolution operator, which can be written in a linear matrix form
Ux=w
where x and ware n, x 1and n,, x 1 matrices, Uisan,, X n, matrix with each row as a time-shifted u(t). The

parameters n, and n,, are the number of samples of u(t) and w(t). We solve the inverse problem for x by
minimizing the L norm of data residuals and model parameters, with a positivity constraint:

minimize ||Ux — w2 + 4||x||2 , subjectto: x > 0

where 1 is a regularization parameter chosen by the L curve method [e.g., Aster et al, 2011] to ensure
reasonably good waveform fits and compact STFs.

The small magnitude of the M,, 4.3 EGF event ensures its simple source process but also limits the frequency
band with high signal-to-noise ratios (SNRs); even at the regional stations, the EGFs are still noisy at low
frequencies (f < 0.5~Hz). To stay consistent with Zhan et al. [2014a] and focus on the high-frequency energy
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same rupture parameters as in Zhan et al. [2014a]. The corrected directivity.
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line estimated previously from the teleseismic data (blue dots). To test the supershear rupture model more

quantitatively, in Figure 3, we plot the STF
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are not inverting for a new rupture model but testing whether new data are consistent with the previous rup-
ture model, we assume the rupture direction 6,=130° the same as that derived in Zhan et al. [2014a].
Compared with the teleseismic STF durations (green dots in Figure 3), all regional STF durations are signifi-
cantly longer, consistent with the downward rupture along the steeply dipping fault plane. Then we correct

the regional STF durations for the vertical rupture dimension H = 11 km, by #;H, where 7, = — %ﬂs" is the

vertical slowness. The corrected STF durations (cyan squares) fall near the predictions from the previous
rupture model (red line in Figure 3). Thus, the Pwave STF durations of the new regional data are consistent
with the supershear rupture model. Considering the uncertainties in STF durations, we do not find it
necessary to update the rupture model.

3. Joint Inversion for the Moment-Rate Function

The regional STFs, stretched by the downward rupture directivity (STF durations ~2.1-2.6 s), provide more
details about the rupture process than the compressed teleseismic STFs (durations ~ 0.5-1 s). However, lim-
ited by the bandwidths of the M 4.3 EGFs, regional STFs are still estimated by deconvolving accelerations and
are only well constrained at high frequency (>1 Hz). In other words, the bandwidths of the STFs are mostly
constrained by the EGFs, not by the high-SNR records of the M,, 6.7 event. STF broadband features such as
peaks and gaps are mostly controlled by the regularization and positivity constraints and have intrinsic
nonuniqueness. For example, the STF of station PET has a gap separating two apparent subevents; however,
STFs of the other five stations, which supposedly share the same shape, are different (Figure 2).

To retrieve the broadband moment-rate function (MRF), we need to find at least one broadband approxima-
tion of the Green'’s function, with greater bandwidth than the available EGFs. As discussed above, the five sta-
tions to the east of the target events show strong waveform complexities due to slab effects, and we do not
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Figure 4. One-dimensional velocity model for station OKH,

merged and modified from CRUST 2.0 and PREM. Note that and has clean broadband information, which is
the calculated synthetic seismograms fit the OKH observations ~ of primary importance in estimating the broad-
well (Figure 2). band moment-rate function.

To improve the uniqueness/robustness of the deconvolution, we conduct a joint inversion for the MRF with
all six regional stations simultaneously. With the confirmed rupture geometry and speed in the last section,
we further assume a unilateral rupture with a constant rupture speed. Then, the individual STFs can be
considered as the MRF uniformly stretched by a factor of T;/z, where 7 is the source duration and T; is the
predicted STF duration for station i. For the joint inversion, we undo the temporal scaling by compressing
the data and EGFs/sGF by factors of z/T; so that the new STFs are expected to be the same as the MRF for
all stations. We use the displacement sGF for station OKH, and acceleration EGFs for the other five stations.
Their amplitudes are scaled to be roughly the same so that every station contributes equally to the inversion.
The choice of the damping parameter 1 is still based on the L curve method, but is found to be much less sen-
sitive due to the better joint constraints. The resulted MRF of the joint inversion is shown in Figure 5. Using this
single MRF, we achieve reasonable waveform fits for all stations, which show that the joint inversion helps to
overcome the nonuniqueness in individual deconvolutions and combines different stations’ bandwidths effec-
tively. With the constraint from the OKH displacement record, the new MRF has more long-period energy than
the individual STFs derived from acceleration seismograms (Figure 2), while the high-frequency components of
the MRF are still able to fit the high-frequency accelerations of the other five stations.

The new MRF has a smooth shape with no gaps, which is more consistent with a continuous rupture than a
dynamically triggered doublet. To further test the maximum allowed gap in the MRF by the regional wave-
forms, we impose gaps of different widths on the MRF around the position where the PET STF shows the
gap and compute the waveform fitting residuals of the joint inversions. As shown in Figure 5, gaps wider than
0.1 s increase the residuals rapidly, mostly due to worsened fits to the OKH displacement data. Furthermore,
unrealistic spikes are induced at the edges of the gaps in the MRFs (e.g., green inset in Figure 5, right). When
the imposed gap width reaches 0.18 s, the OKH record is not fit at all and its constraints on the long-period
MRF properties disappear; hence, the MRF absolute amplitude drops significantly (cyan inset in Figure 5,
right). This again demonstrates the critical broadband constraint on the MRF provided by the station OKH.
When the gap width reaches 0.36s, the waveform fits of the other five stations’ acceleration data also
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Figure 5. Joint inversion of six regional stations for a single moment-rate function. Except the displacement seismogram of
OKH, all other data are in broadband acceleration. All seismograms are plotted in true relative time scales and amplitudes
as they are compressed and weighted in the joint inversion. The numbers below the station names are the temporal scaling
factors. The black and red traces are the data and predictions, respectively. (top left) The final moment-rate function,
with the source duration shaded in red, which includes most of the energy (right column) The residual in percentage versus
the imposed gap width around 1.05 s, where the STF using only the PET station shows a gap. When the gap width is larger
than 0.1 s, the residual increases rapidly. Unrealistic spikes are induced at the edges of the imposed gaps. The resulting
MRFs at three turning points (large green, cyan, and yellow dots) are displayed with the same time and amplitude scales.
When the imposed gap increases beyond 0.18 s, the waveform fit of the OKH displacement is too poor to provide long-
period constraints, and the absolute MRF amplitudes drop.

degrade significantly. Therefore, the maximum allowed gap in the MRF is less than 0.1's, much shorter than
the total source duration of ~1.5 s. The gap observed in the PET STF is an artifact of the narrow-band data and
intrinsic nonuniqueness of deconvolution.

The inversion approach described above assumes a constant rupture velocity and tests for the possibility of rup-
ture gaps defined by gaps (zero values) in the moment-rate function. We also experimented with an alternate
model defined by two point sources, in which the second source is triggered by the P wave from the first
source. We were unable to find any combination of source separation distance and subevent durations that
could fit both the regional and teleseismic data. This is not surprising, given that the subevent durations cannot
exceed the shortest teleseismic pulse durations for a point source model, and thus the subevents cannot sum to
more than twice this duration for regional station observations without introducing a gap in the predicted
regional STF records.

4, Conclusions

In this paper, we have shown that the STF durations of the additional regional stations are consistent with the
rupture geometry and supershear rupture speed determined in Zhan et al. [2014a]. We also conduct joint
inversions of all regional stations’ waveforms and find that the broadband MRF is relatively smooth and
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has no significant gaps. The gap in the STF of station PET is an artifact caused by limited EGF bandwidth and
the nonuniqueness of deconvolution. The continuous STF obtained in this paper indicates that the M,, 6.7
event is most likely a continuous supershear rupture and not a dynamically triggered doublet. A continuous
rupture and a doublet are physically distinct models. The former has a stress concentration near the advan-
cing edge of the faulting area, while the latter involves static or dynamic stress in the medium that is large
enough to trigger another independent event, which is not necessarily connected to the initial event by a
contiguous slip surface. However, given the limited resolution of teleseismic data, it would be difficult to dis-
tinguish a series of subevents triggered by Pwaves from true supershear rupture. What we can rule out with
the smooth MRF that we obtain here is a model where a very localized subevent triggers another well-
separated and localized subevent, in which case the MRF would have a distinct gap separating two subevents
with high stress drops.
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