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S U M M A R Y
Understanding earthquake clustering in space and time is important but also challenging
because of complexities in earthquake patterns and the large and diverse nature of earthquake
catalogues. Swarms are of particular interest because they likely result from physical changes
in the crust, such as slow slip or fluid flow. Both swarms and clusters resulting from aftershock
sequences can span a wide range of spatial and temporal scales. Here we test and implement
a new method to identify seismicity clusters of varying sizes and discriminate them from
randomly occurring background seismicity. Our method searches for the closest neighbouring
earthquakes in space and time and compares the number of neighbours to the background
events in larger space/time windows. Applying our method to California’s San Jacinto Fault
Zone (SJFZ), we find a total of 89 swarm-like groups. These groups range in size from 0.14 to
7.23 km and last from 15 min to 22 d. The most striking spatial pattern is the larger fraction
of swarms at the northern and southern ends of the SJFZ than its central segment, which may
be related to more normal-faulting events at the two ends. In order to explore possible driving
mechanisms, we study the spatial migration of events in swarms containing at least 20 events
by fitting with both linear and diffusion migration models. Our results suggest that SJFZ
swarms are better explained by fluid flow because their estimated linear migration velocities
are far smaller than those of typical creep events while large values of best-fitting hydraulic
diffusivity are found.

Key words: Earthquake interaction, forecasting, and prediction; Seismicity and tectonics;
Statistical seismology.

1 I N T RO D U C T I O N

Clusters are common across earthquake catalogues in the form of
both main-shock–aftershock (M–A) sequences and swarms. The af-
tershock sequences triggered by main shocks have been well studied
and can be simulated by statistical modelling of event-to-event trig-
gering, such as the Epidemic-Type Aftershock Sequence (ETAS)
model, which bears on the empirical Omori’s law and Gutenberg–
Richter (G–R) magnitude–frequency relationship (e.g. Ogata 1988;
Helmstetter & Sornette 2002). In contrast, swarms are typically but
somewhat vaguely defined as clusters without obvious main shocks,
or more generally as clustering that does not appear to result pri-
marily from earthquake-to-earthquake triggering. Characterizing
swarms is important for understanding their underlying physical
driving mechanisms and the physical properties of areas prone to
swarms. Swarm occurrence is often associated with external aseis-
mic processes, such as fluid migration and aseismic slip (e.g. Hill
1977; Vidale & Shearer 2006; Lohman & McGuire 2007). Other
studies have suggested that areas of high heat flow, which results in

low viscosity and small accumulated elastic strain, tend to generate
more swarms than M–A sequences (Ben-Zion & Lyakhovsky 2006;
Yang & Ben-Zion 2009).

To fully characterize earthquake swarms, it is desirable to com-
pile as complete a swarm catalogue as possible. Previous swarm
studies mainly have applied two kinds of approaches: (1) Select
clustered events with higher densities in fixed space and time win-
dows than background events, and then separate swarms from M–A
sequences (Vidale & Shearer 2006); and (2) Fit earthquake cat-
alogues with ETAS parameters, including background seismicity
rate, aftershock productivity and branching extent, and identify se-
quences with anomalous parameters or an excess of events com-
pared to the ETAS model predictions (e.g. Hainzl & Ogata 2005;
Enescu et al. 2009; Llenos et al. 2009; Roland & McGuire 2009).
These sequences are likely to be swarm-like in character because
most aftershock sequences will be predicted by the ETAS model.
Here we largely adopt the first approach, but implement a variable-
window-size method to naturally and automatically accommodate
a wide range of cluster sizes.
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We choose the San Jacinto Fault Zone (SJFZ) as a proof-of-
concept test site because it may host a number of swarms due to
possible deep creep (Wdowinski 2009) and the presence of geother-
mal fluids, especially near its southern end. As one of the most seis-
mically active regions in southern California, the SJFZ has abundant
microseismicity and five M ≥ 5 earthquakes have occurred there
since 1981. Due to the difficulty of detection at depth, clear ob-
servations of slow slip within the SJFZ have not been established.
However, slow slip has been hypothesized for some time because
of observations near Anza, where strainmeter data show anomalies
possibly related to slow slip (Agnew & Wyatt 2005) and substan-
tial afterslip at depth following some earthquakes can be inferred
from strain and aftershock data (Inbal et al. 2013). Furthermore,
the moderate earthquakes to the south of Anza are observed to
have relatively large aftershock productivity (Felzer & Kilb 2009).
High-frequency tremor, which is often observed to accompany slow
slip, has also been found near Anza (Gomberg et al. 2008; Wang
et al. 2013). In addition, the southern SJFZ includes patches near
the Salton Sea and Salton Sea geothermal field, where numerous
swarms have been observed (Lohman & McGuire 2007; Chen &
Shearer 2011). The objective of this paper is to characterize the fea-
tures of the SJFZ swarms identified by our new approach, including
their spatial and temporal distributions and migration behaviour.

2 DATA A N D M E T H O D

Because swarms are often very compact (i.e. less than 1 km across),
it is desirable to use an earthquake catalogue that has been relo-
cated using high-resolution methods. Currently the most accurate
and complete earthquake catalogue in southern California is the re-
located HYS catalogue (Hauksson et al. 2012), which results from
differential traveltime relocation from waveform cross-correlation
and absolute traveltime relocation using an improved 3-D velocity
structure. From the HYS catalogue, we choose events between 1981
and 2014 within 20 km away from the strike of the SJFZ. The mag-
nitude completeness is estimated to be 2.0 for this region according
to G–R magnitude–frequency analysis. However, the majority of
the earthquakes in the catalogue are smaller than M 2.0 and many
swarms are defined largely by these smaller events. Thus, for the
purpose of detecting the maximum number of swarms we analyse

77 377 SJFZ earthquakes down to M 1.0, recognizing that the cata-
logue is not complete to this level. Because it is improbable that the
detection threshold varies significantly over short time and length
scales, it is unlikely that this results in any false detection of clusters.

2.1 Identification of clusters

We describe clusters using the nearest-neighbour approach from
Zaliapin & Ben-Zion (2013a), which provides a general way to
separate clusters from background events. The distance η between
two events in space and time is defined as

η = dt × drd

where dt is the time separation between the two events, dr is the 3-D
space separation and d is the fractal dimension. We experimented
with different values of d and found that the cluster identifications
did not change very much, thus we use d = 1.6 following the study
of (Zaliapin & Ben-Zion 2013a). Note that we modify the definition
of η in Zaliapin & Ben-Zion (2013a) by dropping the magnitude
dependence because we seek to identify all clusters, not just after-
shock sequences explained by earthquake-to-earthquake triggering
models; thus we do not search for the most likely triggering events
among events before the target event (Zaliapin & Ben-Zion 2013a)
but instead search for the closest events to each target event (our
study). Note also that the specific units used to measure dt and dr
are unimportant because we consider only relative values of η. For
a given target event, the event in the catalogue with the smallest η

value is termed its nearest neighbour.
Our algorithm aims to detect event clustering in space and time

by comparing local event density with the surrounding distribution
of ‘background’ events. We sequentially treat each event in the cat-
alogue as a target event and find its n nearest neighbours (for n from
3 to 200) from subsequent events. For each value of n, we save de-
tails of the space/time window, that is, the maximum temporal and
spatial distance (tmax and rmax) from the target event. This defines
a reference space/time window, which is shown in green in Fig. 1.
Similar to the idea of STA/LTA (short-time-average through long-
time-average) triggering algorithms (e.g. Vanderkulk et al. 1965),
we also define a larger ‘background’ window that scales with tmax

and rmax. This window includes: (1) events with distance dr ≤ 3rmax

Figure 1. Illustration of our cluster detection method. A cluster is identified when the number of neighbours (nin = 10) within a window of rmax km and tmax

days (green) is significant compared to the number of background events (nout = 2) in a larger window (pink). The maximum neighbouring distance from the
target event is shown by the red curve.
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and time |dt| ≤ 10tmax prior to the target event, and (2) events within
rmax ≤ dr ≤ 3rmax, and an interval of dt ≤ 3tmax following the target
event. This background window is shown in pink in Fig. 1. Our strat-
egy for identifying space/time clusters is to find seismicity groups
with a relatively large number of events in the reference window
compared to the background window, which both precedes and sur-
rounds the reference window. The reference window dimensions of
10tmax and 3rmax are somewhat arbitrary and were chosen following
limited experimentation with other values; we find that they work
quite well in discriminating seismicity clusters from more random
seismicity for our data set. We also tested background spatial win-
dows of 2rmax and 6rmax, and found that they yielded numbers of
clusters are only about 10–15 per cent different from our preferred
results. Note that to avoid including possible late aftershock events,
we do not include events within dr ≤ rmax and tmax ≤ dt ≤ 3tmax

as part of the background window. This is consistent with the
fact that aftershock sequences usually decay more slowly in time
(p, Omori’s law parameter, typically p = 1) than in space (q = 1.5
to 2.5; e.g. Shearer 2012). Comparing the number of events falling
in the windows, we quantify the clustering strength as

Q = nin

nout + 1

where nin is the number of neighbours in the reference window and
nout is the number of events falling in the background window. For
each target event, the largest value of Q (Qmax) from the 198 values
of n is chosen and the corresponding nin neighbours are saved as
daughter events in the cluster group.

Our next step is to remove duplicate clusters. In the case that a
target event is included as a daughter event in other cluster groups
with larger values of Qmax, we remove the target event and its group.
In addition, when one daughter event has multiple parent events
with different Qmax values, we keep the parent event with the largest
value of Qmax. From our catalogue of 77 377 events this results in a

total of 24 689 possible clusters. However, most of these have low
Qmax values or very small numbers of events. To focus on the most
clearly defined clusters, we analyse only groups with Qmax ≥ 2 and
containing at least 10 events. Using these criteria, a total of 179
clusters are found in our study area. Three examples of identified
clusters are shown in Fig. 2.

2.2 Separation of swarms and M–A sequences

From the 179 clusters, we then attempt to separate the swarm-like
and M–A sequences. The clearest difference between these groups
is seen in their magnitude–time distribution. Swarm-like sequences
do not usually start with their largest event, while in M–A sequences
the mains hocks tend to occur near the beginning of the cluster. To
quantify this magnitude behaviour, we adopt two measures: the
timing of the largest event tm normalized by the mean value, and
the skewness value μ. For a given sequence, the skewness of the
moment release with time can be calculated as (Roland & McGuire
2009; Chen & Shearer 2011)

μ =
∑N

1 (ti − t∗)3 Mi

σ 3
,

where the numerator is the third central moment of moment release,
t∗ is the centroid occurrence time, the mean value of ti weighted by
moment release (Mi) and σ is the standard deviation of central
moment.

For the 179 clusters, the median value of tm is 0.77 and the me-
dian μ is 1.77. Note that because a large aftershock sequence may
fall into several smaller clusters, to avoid the artefact that parts
of aftershock sequences are treated as swarms, we include events
within the reference window and its following surrounding window
to calculate the values of tm and μ for each cluster. The tm param-
eter is a robust measure of the timing of the largest event, but is

Figure 2. Three examples of identified seismicity clusters including, from left to right, one large swarm, one small swarm and one main-shock–aftershock
(M–A) sequence. The spatiotemporal windows for each group are shown in the top panels. Symbols are the same as used in Fig. 1. Below are the distributions
of magnitudes versus time. Note that the largest events (red dots) occur later in swarm-like sequences and earlier in the M–A sequence. The target events, also
the first events in each sequence, are denoted by blue dots.
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Figure 3. Skewness μ and tm for 179 seismicity clusters. We have divided
these clusters into swarm, M–A and mixed type categories using empirical
thresholds.

not a good measure of the overall moment distribution, which may
result in misidentification of foreshock-main-shock sequences as
swarms. While skewness measures the overall asymmetry of the
moment distribution, it is sensitive to the duration of sequence, that
is, a long duration can bias μ to a larger value, and may involve
misidentification of swarms as M–A sequences. Therefore, we cat-
egorize the clusters into swarms and M–A sequences using both
measures.

As the largest event tends to occur later in swarm-like sequences
and earlier in M–A sequences, we expect that swarm-like sequences
have relatively large tm and small or negative μ, while M–A se-
quences have small tm and large positive μ. A sequence with tm > 0.5
indicates events occur in the later part of the sequence, and the em-
pirical threshold to differentiate swarms and M–A for μ is around 5
(e.g. Roland & McGuire 2009). Fig. 3 shows that 71.5 per cent of the
clusters fall into the two categories using both measures. Namely, a
total of 89 clusters with tm > 0.5 and μ < 6 are identified as swarms,
and 29 clusters with tm ≤ 0.5 and μ ≥ 6 as M–A sequences. We
assign the rest of the clusters to a mixed type category. These 61

clusters cannot be definitively identified as M–A or swarms but con-
tain a diversity of behaviour. For example, it can include sequences
with the largest event occurring at the beginning, and multiple other
events nearly as large occurring throughout the sequence, which
leads to a small tm and a small μ. While some of these clusters are
more ‘swarm-like’ than others, we do not attempt to divide them
any further and focus only on the other two categories, where more
definitive identifications are possible.

Fig. 4 illustrates the differences between M–A sequences and
swarms, showing their temporal distribution relative to the largest
event, and the relationship between their skewness values and a
measure of their spatial migration with time. Earthquakes in many
swarms are observed to exhibit spatial migration (e.g. Hainzl 2004;
Lohman & McGuire 2007; Chen & Shearer 2011). As a rough es-
timate of whether the sequences migrate in space, we calculate the
spatial separation between the centroids of the first half and the
second half of the sequences, and normalize it by the radius of the
cluster, defined as the median distance from the centre. For each
type, we shift the event occurrence time relative to the largest event
in each sequence and stack the number of events from all sequences
in time windows normalized by the largest time (Fig. 4a). For the
M–A-like sequences, most events occur following the largest event
with power law decay. In contrast, the swarm-like clusters are much
more time symmetric with respect to their largest event, as ex-
pected since the largest earthquake usually occurs relatively late
in swarm sequences. Generally, swarm-like sequences have larger
separation distances and smaller skewness values, and M–A-like
sequences have smaller separation distances and higher skewness
values (Fig. 4b). However, the variety of separation distances sug-
gests that not all swarms migrate and that they may migrate with
different velocities. We will quantify the migration behaviour more
directly in Section 3.3.

3 R E S U LT S

3.1 Map views

We map the spatial distribution of the 2035 swarm-like events be-
tween 1981 and 2014 in Fig. 5, in which large and small clusters

Figure 4. Difference of main-shock–aftershock (M–A) sequences and swarms in terms of temporal distribution, skewness values and separation distance.
(a) Stacked number of events versus normalized time relative to the largest event. Note that a large number of events occur prior to the largest event for the
swarm-like groups while the M–A-like sequences are dominated by events following the largest event. (b) Relationship between skewness values and separation
distance. Each circle denotes one cluster group. The mean values of separation distance for each type are given by lines in different colours.
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Figure 5. Map view of the detected swarm (solid circle) events in the SJFZ. The circles are colour-coded by occurrence time and scaled with the total number
of events in each group. Hexagons represent the swarms identified from Vidale & Shearer (2006). Stars mark five M ≥ 5 earthquakes including two Superstition
Hills in 1987 and three occurring south of Anza. Blue line shows the strike of the SJFZ, along which cross-sections are shown in Figs 5 and 6. Grey dots denote
the 77 377 catalogue events between 1981 and 2014. CCF: Coyote Creek Fault. Note that the events shown on the map are only SJFZ events, and the events in
surrounding faults are masked.

are defined based on the number of events in each group. These
swarms span our study region but do not appear to be distributed
uniformly within the seismicity. The northern and southern ends of
the SJFZ have more frequent and larger swarms, such as the area
in the San Bernardino Mountains near the intersection of the San
Andreas Fault and the SJFZ, and the area close to the Salton Sea.
Regions of the SJFZ with a high background seismicity rate do not
always produce swarms, such as the areas close to the Banning Fault
and the Coyote Creek Fault (CCF) and the region near south of the
1987 M 6.6 Superstition Hills.

In the same study area, Vidale & Shearer (2006) identified 12
swarms, each of which contains at least 40 events occurring within
4 weeks and a 2 km radius. The swarms identified from our method
range from 0.14 to 7.23 km in radius and last from 15 min to 22 d.
Because swarm sequences can contain gaps in space or time, the
parent and daughter events for a certain sequence identified using
two different methods might be different. We map the locations of
the 12 swarms from Vidale & Shearer (2006) and find that they
coincide with swarms in our analysis (Fig. 5). In general, our results
add additional swarms compared to Vidale & Shearer (2006) and
span a wider range of sizes.

3.2 Cross-sections

To examine the spatial distribution of swarms in more detail, we
plot a depth cross-section along the strike of the SJFZ (Fig. 6a). For
comparison, we also plot the cross-section of our detected 29 M–A
sequences (Fig. 6b). While the occurrence of both types of clus-
ters is not homogeneous, swarms are distributed differently from
M–A events. The two ends of the fault are dominated by numerous
large swarms, while sparser and smaller swarms occur in the cen-
tral segment, which we define as from 50 km to 150 km along the

strike from the northern end point (Fig. 6a). M–A events are mainly
concentrated in two regions where three M ≥ 5 earthquakes oc-
curred near Anza and further south where the two Superstition Hills
earthquakes occurred. The other regions with a moderate number
of M–A events (about 10–30) do not correlate with the occur-
rence of swarms. Fig. 6(c) plots histograms of catalogue and swarm
events along the fault strike. The distribution of swarms does not
always follow the background events. The background events are
distributed relatively evenly along strike with two peaks in the north-
ern and central segments, whereas the highest swarm rate occurs at
the southern end and the central segment hosts the lowest swarm
rate. Fig. 6 also shows the maximum depth of seismicity becomes
shallower from north to south, especially at the Anza gap and the
CCF, which could be caused by regional heat flow changes (Doser &
Kanamori 1986). Fig. 6(d) shows that the depths of catalogue events
are broadly distributed and extend to about 17 km depth, while the
swarms tend to occur at shallower depths with a peak around 8 km
and few swarms below 10 km.

We now consider the temporal distribution of the SJFZ swarms
and explore their relationship with large regional earthquakes. The
non-swarm part of the catalogue appears consistent with a roughly
constant background rate (i.e. Poissonian), punctuated by clusters
caused by aftershock sequences. However, SJFZ swarms appear to
exhibit temporal variations (see Fig. 7). For example, during the
period between 1991 and 1998, fewer swarms are found for the
whole SJFZ. Because the magnitude of completeness for the entire
catalogue is about 2.0, we tested this result by identifying swarms
from M ≥ 2 events and the results still show a lower rate of swarms
in this period, which is particularly pronounced for the central seg-
ment where a number of swarms occurred in the 1980 s, followed
by quiescence in the 1990 s, and then a few swarms in the 2000 s.
However, statistical tests show that this apparent rate change could
be due to random chance, that is, we cannot definitively exclude
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Figure 6. (a) Cross-section of swarm-like events versus depth. Symbols are the same as in Fig. 4. Dashed line marks the maximum seismogenic depth. Note
that the central segment has fewer swarm events than the two ends. (b) Cross-section of M–A events versus depth. Triangles denote the M–A events. Histograms
of catalogue events and swarm events along strike (c) and in depth (d) show differences in spatial distributions.

the possibility that swarm occurrence times are Poissonian. Fig. 7
also shows that the number of catalogue events jumps notably with
the five moderate main shocks and increases slightly following four
large regional earthquakes. In contrast, swarm occurrence does not
appear to be affected by the four M ≥ 6.5 regional earthquakes.
For example, abundant swarms activate at the southern end of the
SJFZ after 2009, with locations close to the US-Mexico boundary.
However, their relationship to the 2010 M 7.2 Baja California earth-
quake is unclear because the swarms begin several months before
the earthquake.

3.3 Swarm geometry and migration

To explore the possible causes of the SJFZ swarms and their rela-
tion to local geology, we estimate the geometry of swarm sequences

based on their 3-D event locations. Following the method described
in Vidale & Shearer (2006), we compute the three eigenvalues
(λ1, λ2, λ3) and corresponding eigenvectors from autocorrelation
of hypocentral coordinates. Swarms fall on a plane if λ1, λ2 � λ3,
thus planarity is defined by 1 − λ3/λ2. A majority of the 89 swarms
have planarity more than 0.8 and the highest number of swarms falls
in the bin with planarity near 1, as shown in Fig. 8. This strong pla-
narity suggests that these swarms are related to pre-existing faults.
The strike and dip of the best-fitting seismicity plane can be cal-
culated from the eigenvectors. Fig. 8 shows that most swarms dip
steeply with angles greater than 60◦. This suggests that faulting type
may be an important factor for the occurrence of swarms because
normal faults and strike-slip faults tend to have steeper dips. A more
detailed analysis of the relation between swarms and faulting type
is described in Section 4.
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Figure 7. Spatiotemporal distribution of swarm events compared to the catalogue events in the SJFZ. The top panel maps the time and location of events and
shares the same symbols as in Fig. 5. Besides the five M ≥ 5 earthquakes in the study area (two Superstition Hills events occurred on the same day in 1987),
four M ≥ 6.5 regional earthquakes are marked by the dashed lines. The panel below shows the cumulative distributions versus time. Pink lines represent 1000
random catalogues with the same number of catalogue events. Inset shows the distributions of swarm occurrence (pink line) and 1000 random catalogues
(yellow lines) with the same number of swarm occurrences (89).

Since the separation distance we calculated earlier indicates that
many swarms migrate with time, we further quantify the migration
velocity from the event times and locations. Following the approach
in Chen & Shearer (2011) we model two types of behaviour, that is,
linear and diffusion migration. To obtain reliable results we model
only the 44 swarms containing at least 20 events. We fit event time
and locations in each sequence with these two types of models
using an inversion algorithm (Chen & Shearer 2011), in which a
weight function is applied to penalize early arrivals more than late
arrivals. In this way, the migration front of seismicity initiation is
modelled with events falling in the upper triangle window in the
time–distance plot (Fig. 9). For linear migration, we find the best-
fitting parameters of migration speed (v) and migration direction

represented by a strike and dip. The diffusion model is based on the
equation r = √

4π Dt , where D is the hydraulic diffusivity, also
called the diffusion coefficient, and r is the 3-D distance between
one event and the initial migrating event (Shapiro et al. 1997; Chen
& Shearer 2011). We assume the migration starts from the first
event in each sequence, and then grid-search the optimal diffusion
coefficients for all sequences.

To differentiate which migration model is more favourable for
each sequence, we compare the rms (root mean square) of residuals
in the two models. Since both models fit the migration front, which
means to fit the furthest migrating distance at each discretized time,
the rms could be large in both models due to scattered data. In this
case, we visually check which type can better model the migrating
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Figure 8. Histograms of planarity and dip angles for the 89 swarm groups. Most of the swarm groups have large planarity near 1 and steep dips of more than
60◦. See the text for more details.

Figure 9. Time–distance plots obtained by fitting with the two different migration models. (a) Stacked version of 21 swarms fit with linear migration. Each
sequence is represented by coloured dots. The distance is first normalized by the linear migration velocity and then normalized by the maximum time. The red
line represents the expected migration front and the dashed line shows the opposite migration direction. (b) Stacked version of 15 swarm-like groups fitted to
diffusion migration. The distance is normalized by

√
4π D and then normalized by the square root of the maximum time. The dashed line shows the migration

front with the median diffusivity of 0.6 m s−2 for these swarms. (c) An individual sequence with the corresponding colour in panel (a) in the real time–distance
window. (d) An individual sequence with the corresponding colour in panel (b) in the real time–distance window and the best fit of diffusivity is 0.8 m s−2.
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Figure 10. Map view of the best-fitting migration velocities for 36 swarms.
The velocities are mapped at the locations of the first event in each group.
Black arrows represent the speed and direction of the optimal linear migra-
tion. Pink circles scale with the estimated hydraulic diffusivity.

line or curve in the time–distance plot. The sequence is not cate-
gorized if neither type can fit well with a small rms. This results
in 21 sequences fit with linear migration, and 15 sequences with
diffusion migration. Fig. 9 shows the stacked sequences with dis-
tance normalized by its migrating vector (v or D). In Fig. 9(a), some
events migrate in opposite directions, which indicates that they mi-
grate bilaterally rather than laterally and we assume that the two
directions are symmetrical. We also show two individual examples
for each migrating type in which migration fronts are fit reasonably
well although the data show considerable scatter (Figs 9c and d).

We map the estimated migration velocity vectors for the 36
swarms to explore whether swarm migration varies spatially and
with possible tectonic implications. Fig. 10 shows the linear migra-
tion speed and strike, and the diffusion coefficient at the location of
the initial event in each sequence. The linear migration velocities
range from 0.0014 to 0.18 km hr−1 and the diffusion coefficient
varies from 0.01 to 8.81 m2 s−1. The detailed migration velocities
for each swarm can be found in Supporting Information Tables S1
and S2. In general, the southern segment shows faster migration
velocities than the northern segment for both types of migration.
The region near the Salton Sea hosts the largest migration velocities
(v and D), consistent with previous studies in the Salton Trough and
Salton Sea geothermal field (e.g. Lohman & McGuire 2007; Chen
& Shearer 2011). These migrating swarms are likely driven by fluid
and/or aseismic slip.

4 D I S C U S S I O N

Our approach assigns 4.6 per cent of catalogue events within the
SJFZ to be within swarms or swarm-like clusters. Because we ex-
clude clusters with fewer than 10 events, the true fraction of swarm
events may be even higher. However, before accepting that all of
our identified swarms are real, it is important to test whether many
of them could be due to random chance, that is, the accidental
clustering of seismicity in catalogues characterized by a Poisso-
nian background rate and realistic aftershock triggering behaviour.
To perform this check, we generate synthetic ETAS earthquake
catalogues, in which we model earthquake occurrence as a point
process and use the modified Omori’s law and G–R relation to
produce earthquake sequences (Ogata 1988, 1998). We adopt the

values suggested from previous studies in southern California for
the input parameters including the Omori’s decay parameter c and
p (c = 0.001 d, p = 1), b value (b = 1) and an α value related to
the main-shock magnitude dependence of triggering (α = 1; Felzer
et al. 2004; Helmstetter et al. 2005; Shearer 2012). Because the
aftershock productivity K can span a wide range, we conduct a se-
ries of simulations by experimenting with K ranging from 0.01 to
0.08 with the upper limit set just low enough to avoid a runaway
explosion of seismicity. The simulated catalogues contain a com-
parable number of the real catalogue events (∼77 000). We then
apply our swarm detection method to the simulated catalogues and
find the number of clusters ranges from 41 to 239 with increasing
K. However, among these clusters few swarms are found, and even
the catalogue with the highest value of K = 0.08 produces only 17
swarms, which is far less than we find in the SJFZ catalogue. This
shows that the ETAS modelling approach cannot easily explain our
observed number of swarm-type sequences, which was also noted in
Zaliapin & Ben-Zion (2013b). In addition we note that such a high
value of K is unrealistic because it produces aftershock statistics
that violate Bath’s law (Shearer 2012).

We observe that swarms in the SJFZ are unevenly distributed, that
is, the northern and southern ends have more frequent and larger
swarms than the central segment. As suggested by the dip angles,
most of these swarms likely occur in normal and strike-slip faults.
To further explore the relationship between swarm occurrence and
stress regime, in Fig. 11 we map the stress in a 5 km grid across our
study area, as inverted from focal mechanisms (Yang & Hauksson
2013). The cells containing swarms are shown in colour. Although
the overall tectonic regime is dominated by strike-slip faulting, nor-
mal faulting is also found in the areas near the northern and southern
ends of the SJFZ where more swarms occur. Indeed, we find that
a higher fraction of the normal faulting earthquakes (8.6 per cent)
occur as swarms than for the other faulting types (1.8–3.9 per cent).
Among the three types of faulting, the minimum shear stress to rup-
ture for normal faulting is the smallest (Sibson 1974), thus normal
faults may be more sensitive to small stress changes caused by creep
events. Alternatively fluid migration episodes may be more com-
mon in extensional environments. However, some of these larger
swarms also occur within strike-slip zones, so the presence of nor-
mal faulting is not the only controlling factor.

Occurrence of swarms is also suggested to correlate with high
heat flow (Enescu et al. 2009; Zaliapin & Ben-Zion 2013b) and the
high surface heat flow (>100 mW m−2) at the southern end of the
SJFZ may help explain the abundant swarms there. In our cross-
section (Fig. 6a), the region at distances between 20 and 100 km
and depths below 12 km is devoid of swarms and has the deepest
focal depths, where only two spots are available with heat flow
data from the U.S. Geological Survey. Although there is not enough
sampled heat flow data, the deep seismogenic depth and relatively
low heat flow (around 50 mW m−2) at the two locations suggest
this crustal block could have lower heat flow. Still, due to its poor
spatial sampling, the surface heat-flow data cannot account for the
local variations in swarm density. For example, swarms are absent
near the CCF, while the nearest area with available heat flow data
is 20 km south and shows large values (>100 mW m−2). Since
fluid flow is one form of heat transfer, high heat flow is generally
accompanied by hydrothermal circulation, which could be another
key factor to determine the occurrence of swarms.

The leading candidates for the physical driving mechanisms of
swarms are fluid flow and slow slip. In some cases, slow slip events
are also associated with fluid flow (Schwartz & Rokosky 2007).
Slow slip occurs episodically with a long duration of days to months
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Figure 11. Map view of stress regimes and areas with swarm events.
Coloured squares denote the stress regimes for each 5 km grid and are
filled when swarm events occur within the grid. The faulting type is defined
by the Anderson fault parameter (Simpson 1997), which ranges 0.0–1.0
for normal faulting, 1.0–2.0 for strike-slip faulting and 2.0–3.0 for reverse
faulting. Note that more normal faulting events (red) are found at the two
ends of the SJFZ. The fraction of events occurring as swarms for the three
faulting types is also given. The panel below shows the faulting types for
the areas with swarm events along the strike. Circles scale with the total
number of events in each group.

and a wide source area (Obara et al. 2004). Even the localized events
are distributed over a spatial extent of several kilometres such as in
the Salton Trough (Lohman & McGuire 2007). In contrast, fluid flow
is distributed more locally and usually migrates slower than slow-
slip events. According to our results, most of swarms in the SJFZ
are found at 5 to 8 km depth, but several swarms northwest of Anza
are found at ∼13 km depth, which is consistent with the depth where
tremors are observed (Wang et al. 2013). However, it is still difficult
to directly associate our results with slow slip. In our analysis,
the median estimated linear migration velocity is 0.0072 km hr−1,
slower than typical creep or slow slip events (Linde et al. 1996;
Lohman & McGuire 2007). On the other hand, most of the radii of
our identified swarms are less than 2 km, which is much smaller than
the spatial extent of known slow slip events and thus could be more
related to the fluid flow. Our estimated fluid diffusion coefficients
fall in the range of the expected crustal diffusivity between 0.01 and
10 m2 s−1 (Scholz 2002), so it is possible that fluid migration plays
a role in controlling the occurrence of swarms, especially since the
largest estimated hydraulic diffusivity occurs near the Salton Sea
geothermal field, which hosts a large number of swarms. Of course,

with a variety of spatial and temporal scales, our identified swarms
may be driven by different mechanisms.

5 C O N C LU S I O N S

We have developed a new method to search for swarms by compar-
ing the number of neighbours to the number of background events
in scalable spatiotemporal windows. Applying the method in the
SJFZ, we find swarms at a wide range of spatiotemporal scales.
The SJFZ contains strong spatial and temporal variations of swarm
events: the two ends of the SJFZ are dominated by more and larger
swarms and the years between 1991 and 1998 host fewer swarms
than the decades before and after. In general more swarms are found
in normal faulting regions. While most of the estimated swarm lin-
ear migration speeds are lower than those of typical creep or slow
slip events, large values of estimated hydraulic diffusivity are found
near the southern end of the SJFZ (Salton Sea), which indicates that
these swarms could be more correlated with the local fluid flow.
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