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GrowClust: A Hierarchical Clustering
Algorithm for Relative Earthquake
Relocation, with Application to the Spanish
Springs and Sheldon, Nevada, Earthquake
Sequences

by Daniel T. Trugman and Peter M. Shearer

ABSTRACT

Accurate earthquake locations are essential for providing reliable
hazard assessments, understanding the physical mechanisms
driving extended earthquake sequences, and interpreting fault
structure. Techniques based on waveform cross correlation can
significantly improve the precision of the relative locations of
event pairs observed at a set of common stations. Here we de-
scribe GrowClust, an open-source, relative relocation algorithm
that can provide robust relocation results for earthquake sequen-
ces over a wide range of spatial and temporal scales. The method
uses input differential travel times, cross-correlation values, and
reference starting locations, and applies a hybrid, hierarchical
clustering algorithm to simultaneously group and relocate events
within similar event clusters. The method is computationally
efficient and numerically stable in its capacity to process large
data sets and naturally applies greater weight to more similar
event pairs. Additionally, it outputs location error estimates that
can be used to help interpret the reliability and resolution of re-
location results. As an example, we apply the GrowClust method
to the recent Spanish Springs and Sheldon, Nevada, earthquake
swarms. These sequences highlight the future potential for ap-
plying the GrowClust relocation method on a much larger scale
within the region, where existing relocation results are sparse but
vital for understanding the seismotectonics and seismic hazard
of Nevada and eastern California.

Electronic Supplement: Maps of Spanish Springs and Sheldon
sequences with relocation uncertainty, and tables of velocity
models and relocated catalogs for the Spanish Springs and
Sheldon Sequences.

INTRODUCTION

The location of earthquake hypocenters using observations of
seismic phase arrival times is a classic inverse problem in geo-

physics, with a rich history of conceptual and methodological
advancements dating back more than a century. During this
time, catalogs of earthquake locations became one of the most
important and widely used forms of seismological data. They
provide fundamental constraints on a number of important
seismotectonic problems, from the resolution and imaging of
fault-zone structure, to the understanding of the physical
mechanisms underlying earthquake triggering and interaction,
to the improvement of seismic-hazard assessments. In turn, the
degree to which these and other outstanding problems can be
resolved depends intrinsically on the quality and reliability of
earthquake location methodology.

The travel time of a seismic phase observed at a given sta-
tion depends nonlinearly on both the earthquake hypocentral
coordinates and the subsurface velocity structure (Geiger,
1910; Buland, 1976; Thurber, 1985). Because of this, improve-
ments in absolute earthquake location accuracy will always be
limited by imperfect knowledge of 3D variations in the Earth
structure (Thurber, 1983, 1992; Thurber and Eberhart-Phil-
lips, 1999). However, in recent years, numerous methods have
been developed which yield significant improvements to rela-
tive earthquake location accuracy through the joint relocation
of pairs or clusters of linked events (Douglas, 1967; Frohlich,
1979; Jordan and Sverdrup, 1981; Got et al., 1994; Shearer,
1998; Richards-Dinger and Shearer, 2000; Waldhauser, 2000;
Lin et al., 2007). Although initial catalog locations are rou-
tinely determined from the noisy, often emergent phase picks
and associated travel times of each event in isolation, relative
relocation techniques are based primarily on differential travel
times of pairs of events observed at common stations. This
formulation helps mitigate common-mode errors introduced
by the biasing effects of unmodeled velocity structure. Further-
more, waveform cross-correlation techniques (e.g., Poupinet
et al., 1984; Ito, 1985; Fremont and Malone, 1987; Nadeau
et al., 1995; Phillips et al., 1997; Rowe et al., 2002) can be
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used to extract differential travel times with considerably
greater precision than is possible from the absolute travel times
alone. Application of these relative relocation techniques can
therefore result in a dramatic sharpening in seismicity and res-
olution of fine-scale fault structure (e.g., Rubin et al., 1999;
Waldhauser et al., 1999; Astiz and Shearer, 2000; Shearer,
2002) compared to standard catalog locations.

Implementation of these methods is straightforward in the
case of single, compact clusters of events, for which the
common mode errors can be approximated as identical, but
becomes more complicated for distributed seismicity for which
the errors associated with unmodeled 3D velocity structure
vary considerably with event location. The most widely used
approach to relocate distributed seismicity is the double-differ-
ence (DD) method (Waldhauser, 2000), which sets up a linear
system of equations for the differences in event locations as a
function of the input 1D velocity model and differences in
differential times (as well as absolute times, if desired) and then
applies matrix inversion. The DD technique has been applied
to problems across a wide range of scales, including relocating
over 500,000 events in the northern California earthquake
catalog (Waldhauser and Schaff, 2008).

Here we describe an alternative to DD for relocating seis-
micity using differential times, which we term the GrowClust
algorithm and which we are making available to the commu-
nity as an integrated software package (see Data and Resour-
ces). Given the success of the DD algorithm and its growing
user base, why did we develop a different method? One mo-
tivation was to permit applying a more robust misfit criteria
than the L2 norm (least squares) that is used in standard matrix
inversion. GrowClust uses the L1 norm, which is less sensitive
to outliers (bad data points) in the input times and has
been shown in some cases (e.g., Shearer, 1997) to yield im-
proved results compared to L2-norm solutions. Another con-
cern is that for many problems the matrix representing the
complete solution in DD is so ill-conditioned that inversions
become unstable. For example, this can occur when event
clusters are linked by differential times from a single cross-
correlation pair, or a chain of event pairs, and hence the sta-
bility issue becomes more pronounced for large-scale relocation
problems containing multiple discrete clusters of seismicity.
The DD algorithm does provide various algorithm control
parameters to help stabilize the inversion by, for example,
downweighting data from more distant or more poorly corre-
lated event pairs. However, the optimal parameter choices and
iteration-by-iteration sequential weights required to obtain the
best locations are not always obvious to the user, and even these
optimal parameter choices may not guarantee stability for cer-
tain problems. Our approach is to apply cluster analysis ideas to
decide which groups of events are linked and relocated and
which cluster pairs retain independent locations. Although
our method has its own set of parameter choices, we designed
them to be as few and as straightforward as possible. Finally, we
wanted to implement a method that runs fast enough that
bootstrap resampling to estimate location errors is practical on
small computer systems.

The GrowClust algorithm unifies a series of programs that
were developed to relocate seismicity in southern California
using waveform cross correlation (Shearer, 2005; Lin et al.,
2007; Hauksson et al., 2012). GrowClust combines cluster
analysis and relocation of events within each cluster, which
were previously performed as two separate steps. This provides
a significant boost in computational efficiency and conver-
gence stability for large data sets, which typically contain multi-
ple large clusters. GrowClust uses differential travel times and
cross-correlation results in a hybrid, hierarchical clustering
algorithm that both groups events into clusters based on wave-
form similarity and relocates each event with respect to the
linked events within its unique cluster. The method is compu-
tationally efficient and multiscale in its applicability to both
small and large sequences. Unlike many other related reloca-
tion techniques, the GrowClust algorithm intrinsically gives
greater weight to more highly correlated event pairs and does
not require explicit matrix inversion.

A preliminary version of the GrowClust algorithm was
first applied to perform high-precision relocation of a large
data set of more than 100,000 events recorded on the Island
of Hawaii from 1992 to 2009 (Matoza et al., 2013). We
present here a more complete description of the improved,
newly open-source algorithm, which now implements a non-
parametric statistical resampling technique to estimate errors
in the relocated event positions, which proves useful in assess-
ing and interpreting the relocation results. As a demonstration
of the new method, we use GrowClust to relocate two promi-
nent, recent earthquake sequences in western Nevada: (1) the
2012–2015 Spanish Springs swarm (mainshock Mw 4.2),
which caused nonstructural damage and significant shaking
in Reno, and (2) the ongoing, 2014–present Sheldon swarm,
an extensive sequence (dozens of M 4 and hundreds of M 3
events to date) occurring in the northwest corner of the state,
where station coverage is sparse and catalog locations are par-
ticularly scattered. Large-scale, systematic event relocations in
northern (Waldhauser and Schaff, 2008) and southern (Hauks-
son et al., 2012) California have significantly advanced our
understanding of seismicity, seismic hazard, and fault structure
within that state. Our initial results suggest that, with meth-
odological improvements and the recent modernization of the
Nevada Seismic Network (NSN; Kent et al., 2015), the same
potential for scientific advancement exists within Nevada and
eastern California.

METHODS AND ALGORITHM DESCRIPTION

In this section, we detail the methodology and computational
details underlying the current implementation of GrowClust.
As we intend this code to be open-source (see Data and
Resources), future releases of the code may include minor
modifications to the algorithm presented here. We begin this
section with a brief outline of the data-preprocessing steps re-
quired to obtain the necessary inputs for GrowClust. Next, we
describe the basic algorithm used by GrowClust, which simul-
taneously groups individual earthquakes into similar event
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clusters based on the input cross-correlation data and relocates
each earthquake with respect to its cluster neighbors. Finally,
we describe the resampling approach that GrowClust (option-
ally) performs to assess uncertainties of the relocated event po-
sitions. The basic GrowClust workflow is summarized in
Figure 1.

Data Preprocessing
The fundamental input data for the GrowClust algorithm are
differential travel times and cross-correlation values, obtained
through waveform cross correlation of sets of earthquake event
pairs observed at common stations. Both are needed, because
the differential times are used to relocate the events, whereas
the cross-correlation values are used to weight the data by qual-
ity and group events by waveform similarity. However, the
algorithm is sensitive only to the relative values of cross-
correlation coefficients, because the absolute values depend on
both the data quality and auxiliary factors, such as the length of
the cross-correlation window and filter type, if any is used.

GrowClust is flexible in its accommodation of cross-corre-
lation results obtained using any method, whether time domain
or frequency domain, and can use any combination of P- and
S-phase cross-correlation results. For the results presented in this
article, we use a time-domain cross-correlation approach that
uses spline interpolation to achieve millisecond precision in
differential times. Frequency-domain techniques that achieve
similar precision (e.g., Poupinet et al., 1984) should work equally
well. For our approach, we find that applying a zero-phase band-
pass filter from 1 to 10 Hz to the raw waveform data is useful in

isolating the relevant phase arrivals and in mitigating noise that
may cause spurious cross-correlation results.

In addition to cross-correlation times, GrowClust requires a
velocity model to compute predicted differential travel times.
Though not requisite for the GrowClust method, we use travel-
time tables derived from the velocity model to select cross-cor-
relation windows around predicted P- and S-phase arrival times,
a practice that can vastly expand the cross-correlation data set to
include waveform pairs devoid of operator P- and S-phase picks.
Finally, GrowClust requires input event and station lists that
uniquely identify each earthquake (e.g., with an event identi-
fication number) and each station (e.g., with a station name).
The various inputs to GrowClust, along with algorithm
control parameters described in the following section, are com-
bined in an input file read by GrowClust upon initial compu-
tation (Fig. 1).

The GrowClust Algorithm
In this section, we provide a conceptual outline of the hybrid
clustering algorithm used by GrowClust to perform relative
event relocation. Upon program initiation, GrowClust reads
the cross-correlation data, parameters from the algorithm con-
trol file, and input station and event lists into memory (Fig. 1).
The latter contains the initial (catalog or other reference)
hypocentral positions from which events are relocated. The
program also constructs travel-time tables for both P and S
body-wave phases based on the input velocity model, which
are later used to compute the predicted differential times nec-
essary for event relocation.

Following this initial input and data organization stage,
GrowClust begins its hybrid clustering and relocation algo-
rithm, which works as follows (see Fig. 2 for a simplified con-
ceptual example):
1. Assign each of the N events to a distinct starting cluster

number. Though many of these clusters will later be
merged as part of the relocation process, theN initial clus-
ters each begin as a single event.

2. For each event pair !i; j" compute a similarity coefficient
Zij that serves as a metric to measure the data quality and
waveform similarity of each distinct event pair. Here, we
take Zij for an event pair to be a sum over the cross-
correlation values rij;k observed at the k common stations
within a maximum station distanceΔmax and that exceed a
minimum value rmin :

EQ-TARGET;temp:intralink-;df1;323;217Zij #
X

k
rij;k ∀ rij;k ≥ rmin and Δk ≤ Δmax: !1"

The control parameters Δmax and rmin are chosen by the
user in the input control file based on the data set at hand,
and cross-correlation data for P and S phases are treated
equally, unless otherwise specified.

3. Sort the event pairs !i; j" by similarity coefficient Zij and
process each event pair in turn, starting with the most sim-
ilar. As the algorithm proceeds, there are three situations it
may encounter when considering a new event pair (Fig. 2):

Inputs: 
• cross-correlation data (P/S) 
• station and event lists 
• velocity model 
• algorithm control file 

GrowClust 
Problem set up 
• organize input data 
• compute travel-time 

tables (P/S phases) 

Compute event-pair 
similarity coefficients 

Simultaneous clustering 
and relocation algorithm   

Assemble relocated event 
list and run statistics 

Outputs: 
• relocated catalog 
• log file / run statistics 
• cluster-file (optional) 
• bootstrap file (optional)  
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▴ Figure 1. The basic GrowClust workflow chart. Users input
cross-correlation data, station and event lists, a velocity model,
and an algorithm control file into the GrowClust source code.
GrowClust then organizes the input data and creates travel-time
tables for P and S body-wave phases. After computing event-pair
similarity coefficients, GrowClust initiates its simultaneous clus-
tering and relocation algorithm. Finally, after obtaining the final,
relocated event positions, the program (optionally) resamples the
input data for bootstrap uncertainty analysis, or proceeds directly
to output of catalog, cluster, and log files.
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(a) Both event i and j are members of single-event clusters.
In this situation, the events are merged into a new clus-
ter (now with two events), and both are relocated with
respect to the new cluster centroid. The relative relo-

cation algorithm uses a grid-search approach to find
the relative locations that minimize the L1 norm of the
residual between observed and predicted differential
travel times:

▴ Figure 2. Simplified example of GrowClust’s hybrid clustering and relocation algorithm. In this example, there are six events (labeled
with capital letters) and six linked event pairs with quality cross-correlation data (labeled with numbers, in sequential order of waveform
similarity). Event B has no links, and hence its location is held fixed throughout the algorithm. (a) Initial catalog location of events A
through F, with event pairs linked and numbered in order of decreasing waveform similarity. Note that all events begin as single-event
clusters. (b) The most-similar event pair CE and its centroidMCE. (c) The relocation algorithm begins by relocating the most-similar event
pair about its centroid. The relocated pair now belongs to a single cluster CE. (d) The second event pair DF and its centroid MDF. (e) Re-
location of DF about its centroid. The relocated events are merged into a single cluster DF. (f) The third link connects event A to cluster CE.
(g) Event A and cluster CE are now relocated about the total centroid MACE and merged into a single cluster ACE. Note that the relative
positions of events C and E are held fixed. (h) The fourth link connects clusters DF and ACE. (i) Clusters DF and ACE are relocated about
their total centroidMACDEF and merged into a single cluster. All events are now in their final, relocated positions. Note that links 5 and 6 are
used in support of the final proposed cluster merger.
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EQ-TARGET;temp:intralink-;df2;52;745minimizejjdRjjL1 #
X

k
jdttij;k − dt̂tij;kj !2"

(Shearer, 2005). Here dttij;k and dt̂tij;k denote the ob-
served and predicted differential travel times for the
event pair (i; j) at station k, where the predicted times
depend on the relative event locations and the velocity
model. The grid search is performed over the relative
event locations, and the L1 norm of the residuals is
computed over the set of common stations with wave-
form observations of the event pair.

(b) Either of events i or j are members of multievent clus-
ters. In this situation, the algorithm performs a series of
tests to decide whether to merge the clusters and re-
locate all events within both clusters with respect to
one another. First, the algorithm searches for all other
event pairs that link the two clusters. If the ratio of
observed links to total possible links fails to exceed a
specified threshold (e.g., 0.01), the cluster merger is re-
jected, and the event pair is skipped. Otherwise, the
algorithm performs a test relocation of the two clusters
with respect to one another using only the 10 strongest
links (i.e., linking event pairs with the 10 highest Zij
values) for robustness. The cluster relocation uses a
multi-event generalization of the L1-norm approach
applied to single-event clusters in situation (a). The
relative positions of the events within each of the two
distinct clusters are held fixed, whereas the two cluster
centroids are adjusted about the centroid of the com-
bined cluster. Once this trial relocation is performed,
the algorithm checks to see whether the differential
travel-time residuals of the newly merged cluster or the
centroid shifts of the initial clusters exceed tolerance
values specified by the user. These tolerance criteria
help ensure the stability of the algorithm by preventing
mergers that are not required by the data or that in-
volve unreasonably large location adjustments that
would violate the assumption of small location shifts
implicit in relative relocation methods (Geiger, 1912).
If neither criteria are violated, the two clusters are
merged into a single combined cluster that contains
all of events at their new relocated positions.

(c) Both events i and j belong to the same cluster. In this
case, the algorithm simply skips the relocation of event
pair, because both events have already been relocated
further up the algorithm.

4. The algorithm continues processing clusters in this way un-
til no more of them can be merged and relocated, given the
algorithm control parameters. At this stage, GrowClust
then computes the final run statistics for user assessment
and saves these along with the relocation and clustering re-
sults for later output (Fig. 1). It is important to note that
GrowClust is a purely relative relocation algorithm: events
within each cluster are relocated with respect to one an-
other, with the cluster centroids held fixed at their initial
reference positions to ensure stability. As such, the events

that comprise single-event clusters due to lack of waveform
similarity are not relocated by the algorithm and hence
remain at their initial reference positions.

The overall strategy of GrowClust is to begin by relocating
the highest quality event pairs and most similar event clusters
and then hold the relative locations of these events fixed when
computing additional relative locations. An advantage of this
approach is that it permits a grid-search relocation method to
be applied to cluster pairs in which there are only four free
parameters at each relocation step: the dx, dy, and dz offsets
of one of the clusters from a reference position, plus any origin
time shift (dt). The algorithm is computationally efficient be-
cause clusters are treated as coherent event sets, which vastly
reduces the effective degrees of freedom during each relocation
step, because linking event pairs are not relocated independ-
ently. A further advantage of this approach is that it can be
easily modified to optimize against any desired misfit norm,
allowing for improved robustness through the use of the L1
norm rather than the conventional L2 norm.

It is worth noting that the internal architecture of Grow-
Clust is well suited to some additional applications. Because the
method naturally builds its results by performing new locations
relative to a set of previously determined locations, it should be
possible to adapt the method to compute near-real-time loca-
tions, in which new events are relocated with respect to pre-
vious events, rather than having to relocate the entire data set
when new data become available. In addition, the grid-search
location algorithm reads from a set of travel-time tables, which
are currently computed for a 1D velocity model, but which,
with only a slight increase in complexity, could be altered to
work with travel-time tables based on a 3D velocity model.
Finally, the procedure described below that is used to assess
location uncertainties is fully parallelizable, and future imple-
mentations could be adapted to take advantage of this fact and
further improve computational efficiency for large-scale
problems.

Relative Location Uncertainties
The complexity of the GrowClust algorithm precludes simple,
parametric techniques for assessing formal uncertainties in the
relocated hypocentral positions. However, because a measure of
location uncertainty is often fundamental in the interpretation
of relocation results, we developed and incorporated a non-
parametric procedure within the GrowClust program that can
be used to estimate location uncertainties for all relocated
events. The method implements a modified bootstrap ap-
proach based on statistical resampling theory (Efron and
Tibshirani, 1994).

Upon initial input to GrowClust, cross-correlation data
(differential times, cross-correlation values, and associated
station metadata) are organized into arrays of length Nph, in
which Nph denotes the total number of combined P- and S-
phase observations. For each bootstrap iteration, the algorithm
procedure generates resampling vectors (Efron and Tibshirani,
1994) to perform efficient, random resampling of these input
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arrays. The bootstrap-resampled cross-correlation data are then
input to the main GrowClust algorithm, resulting in a per-
turbed set of event locations specific to that bootstrap iteration.
Repeating the resampling procedure B times, a bootstrap dis-
tribution of hypocentral positions (longitude, latitude, depth,
and origin time) is constructed for each relocated event.

Though a complete analysis of the full sampling distribu-
tion using this method may require the number of boostrap
resamples B to be of order 1000 or greater, estimates of stan-
dard errors in hypocentral parameters typically stabilize much
faster (B ∼ 50–100). The nonparametric error estimates out-
put by GrowClust are obtained from the median absolute
deviations

EQ-TARGET;temp:intralink-;df3;40;589MAD!X" # median!jXi −median!X"j" !3"

(Leys et al., 2013), of the bootstrap distribution of hypocentral
coordinates. This provides a more robust characterization of
location uncertainty than the raw bootstrap standard errors,
which may be biased if the underlying bootstrap distribution
is skewed (Hesterberg et al., 2003; Mammen, 2012).

RESULTS: RELOCATION OF NEVADA SEISMICITY

Moderate-to-large, damaging earthquakes (M ≥5) occur more
frequently in Nevada than in any state within the continental
United States except California. ThreeM ≥7 events shook the
western half of state during the twentieth century, and from
the historical record M 6 events occurred on average every six
years (VanWormer and Ryall, 1980; Smith et al., 2008) in the
Nevada–California border region. The strike-slip faults of the
Walker Lane belt in western Nevada and eastern California are
capable of hosting M ≥7 earthquakes (e.g., the 1932 M 7.1
Cedar Mountain earthquake), and the range-bounding normal
faults of the eastern Sierra frontal fault system have a history of
large, mid-M 7 events (Ramelli et al., 1999; Dingler et al.,
2009; Wesnousky et al., 2012). Though these fault systems
pose a significant hazard to the population centers of Reno
and Carson City, as well as rural communities throughout the
region, a comprehensive study of earthquake occurrence with-
in the Walker Lane and the state as a whole has yet to be
undertaken.

To demonstrate the use and efficacy of the GrowClust
method, we apply it to two recent earthquake sequences in
western Nevada: the 2012–2015 Spanish Springs and
2014–present Sheldon swarms (for a regional map and station
locations, seeⒺ Fig. S1, available in the electronic supplement
to this article). Both sequences are prominent within Nevada’s
contemporary seismic record and are worthy of scientific in-
vestigation in their own right. The Spanish Springs sequence
is spatially compact, with more than 1600 events occurring
over a length scale of several kilometers. The sequence was well
recorded by near-source stations operated by the Nevada Seis-
mological Laboratory (NSL), and its Mw 4.2 mainshock was
widely felt in the Reno area. In contrast, the Sheldon sequence
occurred within the remote northwestern corner of the state,

where station coverage is sparse, and hence the initial catalog
locations are poorly constrained. The Sheldon sequence was
larger in scale than Spanish Springs and is of particular scien-
tific interest due to its persistent, swarm-like seismicity, replete
with several discrete clusters containing multipleM ≥4 events.
In the following section, we focus primarily on the interpre-
tation of the GrowClust-relocated event positions, while defer-
ring a more complete assessment of the tectonics and source
mechanisms of the two sequences to future studies.

Waveform Data and Cross Correlation
For our analysis of the Spanish Springs and Sheldon sequences,
we use waveform data archived by the NSL. The NSL database
is organized using an Antelope/DataScope software system
(see Data and Resources), and earthquakes are routinely located
by the NSL using the Antelope dblocsat2 and U.S. Geological
Survey (USGS) HYPOINVERSE algorithms (Klein, 2002),
assuming a reference velocity model listed in Ⓔ Table S1.
These event locations are then forwarded to the USGS/
Advanced National Seismic System (ANSS) Comprehensive
Earthquake Catalog (ComCat; see Data and Resources), and
we take these locations to be the initial event positions prior to
performing the GrowClust relocations. We use the Antelope
relational database to extract the waveforms from the events
associated with each sequence.

Prior to performing waveform cross correlation, we pro-
ceed as described in the Methods and Algorithm Description
section, filtering all traces from 1 to 10 Hz using a band-pass
filter with a gentle roll-off that retains some energy up to
15 Hz. For event pairs in the two sequences, we compute
cross-correlation functions separately for P and S phases on
all available channels of all common stations. We use cross-cor-
relation windows of −1:0 to 1:5 s and −1:0 to 2:5 s for P and
S phases, relative to the predicted arrival times of the respective
phases. The use of predicted arrival times in lieu of operator
picks can significantly expand the cross-correlation data set.
Differential travel times and cross-correlation coefficients are
derived from the raw cross-correlation functions using a spline
interpolation technique that provides millisecond sampling
precision. We use the vertical-component channel for P phases
(if available), and we select the horizontal channel with the
highest cross-correlation coefficient for S phases (and P phases
with no available vertical channel). We ensure the data quality
of our cross-correlation database by further considering only
those event pairs with an average cross-correlation coefficient
of 0.45 across all phases and a minimum of eight phases with
cross-correlation coefficients greater than 0.6.

The 2012–2015 Spanish Springs Sequence
The 2012–2015 Spanish Springs sequence was quite active but
spatially compact, with thousands of events occurring over a
length scale of several kilometers. The sequence is named for
its close spatial proximity to the north Reno suburb of Spanish
Springs, and its largest event (Mw 4.2) was widely felt through-
out the city and resulted in nonstructural damage to select
local buildings. The sequence was well recorded by the dense
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distribution of NSN stations in the Reno area, where the local
magnitude of completion is ∼0:0 (Kent et al., 2015), with
many recorded events of even smaller magnitude.

We use the NSL/ANSS event locations as the initial
catalog positions for our GrowClust relocation analysis of this
sequence. We take advantage of the dense station coverage and
only consider stations within 80 km, resulting in 51 unique
short-period, broadband, and strong-motion stations. We do
not implement a magnitude cutoff for this sequence and hence
do not expect to provide relocated positions for all events (the
majority of which areM 0.5 or less and were initially located by
the NSL using as few as three stations). Even so, we are able to
extract adequate waveform similarity to relocate 793 of the 1616
recorded events in the sequence, including all events M 1.0 and
greater.

GrowClust relocation results for these 793 events are pre-
sented in Figure 3, with the initial catalog positions shown for
reference. Despite the dense station coverage, the initial catalog
positions are highly scattered both in map view and in cross
section (Fig. 3a,c), with little hint of local faulting structure.
In contrast, the relocated seismicity is noticeably sharper, and
the relocated event positions clearly outline several distinct fault-
ing structures (Fig. 3b,d). The primary fault structure strikes to
the northeast and is nearly vertical (cross section A ! A′),
whereas a secondary strand with a more northerly strike

branches off of the primary structure’s northeast end. Fault-
perpendicular cross sections (B ! B′) provide evidence that
seismicity within a secondary cluster to the northwest of the
primary structure occurs on a distinct, subparallel fault strand.

The GrowClust relocations likewise aid in the interpreta-
tion of the spatiotemporal migration of seismicity during the
Spanish Springs sequence (Fig. 4). The sequence began as a
short burst of M 1.0 and lower seismicity in late 2012, with
all events occurring on the southeasterly branch of the main
fault structure. TheMw 4.2 mainshock occurred on 27 August
2013 and was preceded by a vigorous foreshock sequence that
migrated linearly from the southwest toward the mainshock
hypocenter along the main fault strand. The subsequent after-
shock sequence was extended in duration, with several distinct
swarms occurring on spatially isolated sections of the different
structures. Intriguingly, the relocation results reveal a hole (i.e.,
area free of seismicity) on the mainshock fault plane, adjacent
to its hypocenter. This hole may outline the region of largest
slip or near-complete stress release within the mainshock rup-
ture zone, with aftershocks localized at the stress concentra-
tions around its perimeter.

We further use GrowClust’s nonparametric error estima-
tion procedure to examine the lateral and vertical location un-
certainties of relocated events within the sequence. Overall, the
structural features of the sequence are quite well resolved, with
median lateral and vertical location errors of 11 and 62 m, re-
spectively (Fig. 4c and Ⓔ Fig. S2). These low nominal uncer-
tainties, a consequence of the dense seismicity, completeness of
the catalog, and good azimuthal coverage of near-source stations
lend confidence to the interpretation of the salient structural
and spatiotemporal features of the Spanish Springs sequence.

The 2014–Present Sheldon Sequence
The Sheldon earthquake sequence began in July 2014, with
swarms of seismicity occurring within and near the Sheldon
Wildlife Refuge in the northwestern corner of Nevada. In con-
trast to the well-recorded Spanish Springs sequence, station
coverage in this region is quite sparse, particularly before No-
vember 2014, when the near-field station COLR was installed
at ∼15 km distance. The sequence is of considerable scientific
interest due to the large moment release (28 M ≥4:0 and 263
M ≥3:0 events to date, with the largest being Mw 4.8) and its
persistent, swarm-like seismicity that defies conventional earth-
quake-triggering models. Though distant from major popula-
tion centers, the larger events have been felt strongly by local
residents and farming communities near Vya, Nevada.

As with Spanish Springs, we use the NSL/ANSS event
locations as the initial catalog positions for our GrowClust
relocation analysis. Because of the inherent limitation in near-
field station coverage, we include in our analysis all nine record-
ing stations within 250 km. To ensure adequate waveform
signal-to-noise ratio, we implement the previously described
quality-control criteria for our cross-correlation data (see the
Methods and Algorithm Description section), and restrict our
analysis to events of local magnitude 1.8 or greater occurring on
or after 18 November 2014, when the COLR station was
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nique (Waldhauser 2000, see Data and Resources). Doing so not
only provides a benchmark of sorts for GrowClust (as HypoDD
is well established and justifiably popular) but also helps eluci-
date the more relevant differences in methodology. For the com-
parison, we used identical data inputs (initial hypocentral
locations, velocity model, and cross-correlation data) as were
used for the GrowClust results presented above. We performed
sensitivity analysis on the iterative weighting scheme, algorithm
damping, and other control parameters found in the HypoDD
input file to obtain the best relocation results possible, given our
limited experience in the technique’s use. We note that both
sequences are too large in scale and too poorly conditioned to
obtain singular value decomposition solutions to the DD equa-
tions, so the HypoDD results presented here are those obtained
using the damped least-squares conjugate gradient (LSQR) sol-
ution (Waldhauser, 2000), and we have taken care to ensure rea-
sonable condition numbers for each algorithm iteration. As dis-
cussed in Waldhauser (2000), the LSQR solution does not pro-
duce accurate location uncertainty estimates, precluding a formal
comparison with those obtained using GrowClust. Both the
GrowClust and HypoDD methods relocate a comparable frac-
tion of the total number of events in each sequence (793 vs. 764
of the 1616 total Spanish Springs events, 1232 vs. 1282 of the
1369 total Sheldon events, for GrowClust andHypoDD, respec-
tively). The runtime on a standard laptop computer is slightly
faster for GrowClust (14.9 s and 34.2 s for the two sequences)
than for HypoDD (65.0 s and 95.3 s).

Overall, the GrowClust and HypoDD results are in good
visual agreement. This is particularly true for the well-recorded

Spanish Springs sequence (Fig. 7), with both methods provid-
ing good resolution of vertically dipping fault structures and
partitioning events into a single dominant cluster. The similar-
ity in results for Spanish Springs is not surprising, given that
the dense set of differential times ensures strong linkages be-
tween events (and hence, a well-conditioned system for the DD
algorithm). For this reason, it is also unsurprising that there is
greater disparity in the results for the Sheldon sequence (Fig. 8)
in which event pairs are not as robustly linked due to the sparse
station coverage. In this case, the differences in the underlying
computational framework—hierarchical clustering versus ma-
trix inversion—become more apparent. Of particular interest is
the location of the smaller, eastern cluster of seismicity, which
differs by more than a kilometer from method to method. For
the GrowClust relocations, the centroid of this smaller cluster
is fixed to its initial reference position, whereas no such con-
straint is imposed in HypoDD, permitting a centroid shift of
greater than 1 km. The centroid of the larger, western cluster
also undergoes a shift of 133 m to the northeast in the
HypoDD relocations, while remaining fixed in the GrowClust
relocations. GrowClust’s clustering algorithm considers the
western and eastern clusters as independent units (i.e., it does
not find a sufficient number of linking event pairs to join the
clusters), whereas HypoDD relocates both clusters as one co-
herent unit, finding one or more linking chains of event pairs
between the two clusters.

Implications of Relocation Results for the Understanding
of Seismotectonics in the Nevada–California Border
Region
Both conventional mainshock–aftershock sequences and ex-
tended swarm-like sequences are common within the state of
Nevada (Ichinose et al., 1998; Smith et al., 2008; Ruhl, 2015),
and relocation results such as those presented here help to
study and differentiate the active physical mechanisms driving
these sequences. The Spanish Springs and Sheldon sequences
provide important test cases in this regard and demonstrate
the subtlety of the task at hand. Spanish Springs may well fall
into the former classification, because its moment release is
dominated by the Mw 4.2 mainshock. However, complexity
is pervasive even within such a compact sequence, and standard
triggering models cannot adequately account for the extended
duration or the spatial progression of the foreshock and
aftershock sequences. The foreshock sequence is of particular
interest, because its systematic linear migration toward the
mainshock hypocenter lends insight into the nucleation proc-
ess. Likewise, Sheldon’s distinctive spatial migration pattern,
combined with its unusually persistent and swarm-like seismic-
ity, suggest that aseismic or fluid-driven processes may be the
dominant physical mechanisms driving the sequence, rather
than the coseismic stress changes from isolated, individual
mainshocks (Hainzl, 2002; Lohman and McGuire, 2007;
Shearer, 2012; Shelly et al., 2016).

The GrowClust results presented here for Spanish Springs
and Sheldon establish the potential for large-scale relocation
efforts, analogous to those undertaken in recent years in
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▴ Figure 6. Space–time evolution of the 2014–present Sheldon
sequence. (a) Map view of the Sheldon sequence, with events
color-coded by occurrence time (colors scale varies continu-
ously from 2014.75 to 2016.75). (b) Magnitude as a function of time
for these events (colors consistent with panel a). (c) Histograms
of horizontal (top, blue) and vertical (bottom, light red) location
uncertainties for these events (obtained via 100 bootstrap resam-
plings of the input cross-correlation data, see the Relative Loca-
tion Uncertainties section).
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California (Waldhauser and Schaff, 2008; Hauksson et al.,
2012), to elucidate subtle features of Nevada seismicity. Such
efforts may prove to be particularly valuable in Nevada, where
the western half of the state comprises a transition zone that
accommodates ∼20% of the Pacific–North America plate
boundary deformation and is characterized by a spatially com-
plex distribution of intersecting normal, sinistral, and dextral
faults (Ichinose et al., 2003; Faulds et al., 2005; Wesnousky
et al., 2012). The relocated seismicity provides a means to im-
age these structures in high resolution, supplying important
observational constraints on the seismotectonic evolution of
the Walker Lane and central Nevada seismic belts. The exten-
sive historical record of large, damaging earthquakes in Nevada

(VanWormer and Ryall, 1980) makes apparent the importance
of an improved and more rigorously quantitative understand-
ing of seismic hazard. We plan in future studies to expand our
use of GrowClust beyond individual sequences, and apply it on
a much wider scale within the state and the Nevada–California
border region.

SUMMARY

GrowClust is a new and open-source earthquake relocation
algorithm. It uses waveform cross-correlation input data—
differential times and cross-correlation values—in a hybrid,
hierarchical clustering algorithm that simultaneously groups
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and relocates earthquakes in similar event clusters. The method
is fast, flexible, and robust with respect data outliers. GrowClust
also includes a built-in mechanism for performing uncertainty
analysis that gives users a more complete assessment of the
resolving power of the relocation results. We apply the Grow-
Clust method to two prominent Nevada earthquake sequences:
the 2012–2015 Spanish Springs and the 2014–present Sheldon
swarms. The encouraging results for these examples demonstrate
the scientific potential for large-scale relocation efforts within
the region using the GrowClust algorithm.

DATA AND RESOURCES

The waveform data used in this study are archived locally by
the Nevada Seismological Laboratory (NSL) and are publicly
available from the Incorporated Research Institutions for Seis-
mology Data Management Center (IRIS-DMC; http://ds.iris
.edu/ds/nodes/dmc/, last accessed September 2016). Initial
catalog positions are consistent with the Advanced National

Seismic System (ANSS) Comprehensive Earthquake Catalog
(http://earthquake.usgs.gov/data/comcat/, last accessed
October 2016). We use Antelope/Datascope software (http://
www.brtt.com/, last accessed September 2016) to extract
waveforms for each event. We provide catalogs that list both
initial and relocated positions for the Spanish Springs and
Sheldon sequences analyzed in this article in the Ⓔ electronic
supplement to the article.

The GrowClust relocation codes described in this article
comprise an open-source software package under the GNU
General Public License v.3. The GrowClust source distribution,
which includes source codes, a user guide, and an example data
set, is publicly available for download at http://igppweb.ucsd.
edu/~dtrugman/ (last accessed January 2017). We use in this
article the HypoDD implementation of the double-difference
(DD) technique (http://www.ldeo.columbia.edu/~felixw/
hypoDD.html, last accessed October 2016) for comparison to
GrowClust relocations.
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▴ Figure 8. Comparison of relocation results for the Sheldon sequence using the GrowClust and HypoDD methods. (b) and (c) The map
view improvement of GrowClust and HypoDD relocations over (a) the initial catalog locations, whereas (d) and (e) compare GrowClust and
HypoDD relocations in cross section. Only those events that are successfully relocated by both methods are shown, and events are color-
coded by the cluster ID number of each method. For the Sheldon sequence, GrowClust partitions events into two major clusters, whereas
HypoDD uses only one.
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