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Strong Correlation between Stress Drop and Peak Ground Acceleration

for Recent M 1-4 Earthquakes in the San Francisco Bay Area

by Daniel T. Trugman” and Peter M. Shearer

Abstract Theoretical and observational studies suggest that between-event
variability in the median ground motions of larger (M > 5) earthquakes is controlled
primarily by the dynamic properties of the earthquake source, such as Brune-type
stress drop. Analogous results remain equivocal for smaller events due to the lack of
comprehensive and overlapping ground-motion and source-parameter datasets in this
regime. Here, we investigate the relationship between peak ground acceleration (PGA)
and dynamic stress drop for a new dataset of 5297 earthquakes that occurred in the San
Francisco Bay area from 2002 through 2016. For each event, we measure PGA on
horizontal-component channels of stations within 100 km and estimate stress drop
from P-wave spectra recorded on vertical-component channels of the same stations.
We then develop a nonparametric ground-motion prediction equation (GMPE) appli-
cable for the moderate (M 1-4) earthquakes in our study region, using a mixed-effects
generalization of the Random Forest algorithm. We use the Random Forest GMPE to
model the joint influence of magnitude, distance, and near-site effects on observed
PGA. We observe a strong correlation between dynamic stress drop and the residual
PGA of each event, with the events with higher-than-expected PGA associated with
higher values of stress drop. The strength of this correlation increases as a function of
magnitude but remains significant even for smaller magnitude events with corner
frequencies that approach the observable bandwidth of the acceleration records.
Mainshock events are characterized by systematically higher stress drop and PGA
than aftershocks of equivalent magnitude. Coherent local variations in the distribution
of dynamic stress drop provide observational constraints to support the future develop-
ment of nonergodic GMPEs that account for variations in median stress drop at differ-
ent source locations.

Electronic Supplement: Figures showing the relation between M, and M,
comparison of the ground-motion measurements from this study with the cross-listed
records in the Next Generation Attenuation ground-motion database, the validation
curve used to select the optimal tree depth for the Random Forest ground-motion pre-
diction equation (GMPE) used in this study, the between-event ground-motion
residual is plotted versus: (a) stress drop, (b) magnitude-adjusted stress drop, (c) depth,
and (d) depth-adjusted stress drop, a table containing the ground-motion and stress-
drop measurements associated with this study, and an example Python notebook.

Introduction

The intensity of earthquake-generated ground motion
depends on a complex interaction of source, path, and site
effects. Ground-motion prediction equations (GMPEs), in
which observed ground-motion amplitudes are statistically
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modeled as a function of magnitude, source—site distance,
and other auxiliary factors, have long served as an empirical
basis for understanding the various features that most
strongly influence ground-motion intensity. Modern GMPEs
have been quite successful in modeling the first-order influ-
ence of magnitude scaling and distance-dependent geomet-
rical spreading and attenuation (Douglas, 2003). However,
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the modulating influence of source complexity on earth-
quake ground motion remains an area of active research that
is of fundamental importance to the scientific understanding
of earthquake rupture and the practical implementation of
probabilistic seismic hazard assessment (Bozorgnia et al.,
2014; Douglas and Edwards, 2016; Baltay er al., 2017).
Probabilistic hazard forecasts are particularly sensitive to the
between-event variability in the predicted ground motion,
because the hazard curve for the time horizons of interest to
the development of building codes is dominated by the oc-
currence of rare high-amplitude ground motions in the upper
tail of the inferred probability distribution (Anderson and
Brune, 1999; Bommer and Abrahamson, 2006; Cotton et al.,
2013; D'Amico et al., 2017).

From a theoretical perspective, one of the most impor-
tant features driving between-event variability in ground
motion is variability in the dynamic stress drop (or stress
parameter) of the events in question (e.g., Atkinson, 1990;
Atkinson and Morrison, 2009; Baltay et al., 2013; Baltay and
Hanks, 2014; Yenier and Atkinson, 2014). Dynamic stress
drop, as formulated by Brune (1970), can be estimated
entirely from the seismically observed spectra of waveforms
recording an earthquake and is typically used as a proxy for
the relative proportion of high-frequency energy radiated by
the earthquake source during rupture (Atkinson and Beres-
nev, 1997). Earthquakes with higher stress drops release their
energy over shorter time scales, resulting in correspondingly
higher peak-moment rates. For larger (M > 5) earthquakes,
finite-fault effects cause ground-motion amplitudes to satu-
rate with increasing magnitude, and thus the near-source
ground-motion amplitude is controlled primarily by stress
drop (Baltay and Hanks, 2014).

Various observational and theoretical studies validated
this basic correlation between stress drop and ground motion
(e.g., Hanks, 1979; Hanks and McGuire, 1981; Boatwright,
1982; Boore, 1983, 2003; Baltay er al., 2013; Yenier and
Atkinson, 2015; Lior and Ziv, 2017; Oth et al., 2017). How-
ever, the precise functional form of this relation remains
poorly understood, in particular in the ways in which the
relative influence of stress drop varies in response to other
interacting factors, such as magnitude, distance, depth, and
source region. Progress toward resolving these questions
may provide a considerable step forward in reducing the
epistemic uncertainties associated with ground-motion
prediction (Anderson and Brune, 1999). However, exploring
the influence of stress drop requires careful analyses of
extensive joint datasets of ground-motion recordings and
source-parameter estimates, which historically have been
produced independently and for sparsely overlapping earth-
quake sequences, with few events in common.

In this study, we focus on the relationship between peak
ground acceleration (PGA) and dynamic stress drop for a
new dataset of more than 5000 M 1-4 earthquakes that oc-
curred in the vicinity of the San Francisco Bay area, Califor-
nia, from 2002 through 2016 (Fig. 1). We use the spectral
decomposition technique of Trugman and Shearer (2017)
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to derive dynamic stress drop estimates from P-wave spectra,
which are less influenced by attenuation than S-wave spectral
estimates and are best recorded on the vertical-component
channels of near-source broadband and short-period stations.
P-wave spectral decomposition has proven effective in
analyzing the source spectral properties of large datasets of
small-to-moderate magnitude earthquakes (Shearer et al.,
2006; Trugman and Shearer, 2017; Trugman et al., 2017).
We then measure PGA for these earthquakes using the full-
waveform horizontal-component records of the same set of
stations. Although smaller (M < 4) earthquakes are often
excluded from ground-motion analyses, including them here
enables us to examine many more events, characterize local
variations in median stress drop, and examine how the rela-
tion between stress drop and ground motion varies as a func-
tion of magnitude.

The analysis of between-event variability in ground
motion requires a reference GMPE that models scaling
ground-motion intensity as a function of magnitude and ex-
ternal features unrelated to the source, such as distance and
local site effects. The set of existing GMPEs designed for
earthquakes in California was derived from records of
earthquakes that sample different source regions and mag-
nitude ranges than those that comprise our dataset and
hence would be inappropriate to extrapolate from for this
purpose. We instead apply a novel, data-driven approach
based on the Random Forest algorithm (Breiman, 2001)
to derive a nonparametric GMPE that can be used to correct
the observed ground-motion amplitudes for the interacting
effects of geometrical spreading, attenuation, magnitude
scaling, and near-site effects. This nonparametric approach
has the advantage over techniques based on linear regres-
sion in that it can account for complex interactions between
these features without risk of overfitting observational noise
within the data or introducing systematic trends with mag-
nitude or distance into the residuals from the model predic-
tion (Derras et al., 2012, 2014; Bindi, 2017). We use this
framework to define a between-event residual term that
quantifies the empirical contribution of each event to the
observed variability in ground motion. The unbiased accu-
racy of the Random Forest GMPE is particularly useful in
this context because it permits a detailed examination of the
physical correspondence between PGA and the dynamic
properties of the earthquake source. Further, whereas we
focus in this study on PGA, the Random Forest GMPE
framework can be easily extended to predict other metrics
of ground motion, such as peak ground velocity, PGA, and
response spectral acceleration that are of interest for engi-
neering and hazard applications.

Study Region and Waveform Data

We examine earthquakes that occurred from 2002
through 2016 within a region encompassing the San Fran-
cisco Bay area, California (latitude and longitude bounds
of [37.0° 38.5°] and [—123.0°, —121.5°], respectively). This
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Map view of the San Francisco Bay area study region: M > 1.0 seismicity from the relocated catalog of Waldhauser and Schaff

(2008); focal mechanisms for M > 3.5 events, Northern California Seismic Network station coverage (triangular symbols), and mapped fault
structures (see Data and Resources) are shown for reference. The color version of this figure is available only in the electronic edition.

region is of particular interest for earthquake hazard analysis,
due to its active seismicity and high population density. Ma-
jor fault systems within this region include the San Andreas
fault near the San Jose and San Francisco metro areas and the
Hayward and Calaveras faults in the Oakland/East Bay metro
areca (Waldhauser and Ellsworth, 2002; Hardebeck et al.,
2007; Hardebeck and Aron, 2009). Numerous other subpar-
allel faults of varying seismicity rate also strike through this
region (Field er al., 2014). The 24 August 2014 M, 6.0
South Napa earthquake is the largest earthquake that oc-
curred near the Bay area during our study period (Brocher
et al., 2015; Dreger et al., 2015; Ji et al., 2015; Wei et al.,
2015), and it triggered hundreds of moderate magnitude
aftershocks throughout the West Napa fault system and

surrounding region over the subsequent months (Hardebeck
and Shelly, 2016; Llenos and Michael, 2017).
Earthquakes that occurred in the San Francisco Bay
area during our study period were well recorded by the
Northern California Seismic Network (NCSN). We obtain
NCSN waveforms archived by the Northern California
Earthquake Data Center using the event-data query system
(see Data and Resources). We restrict our analysis to earth-
quakes within our study region with catalog magnitude
(typically Mp) > 1.5 and that are listed in the waveform-
relocated catalog of Waldhauser and Schaff (2008). P-wave
spectral estimates are derived from the vertical-component
HN, EH, and HH channels at stations with an epicentral dis-
tance from the source of less than 100 km. PGA estimates are
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derived from the geometric mean of the horizontal compo-
nents of the same set of stations. The event-data query sys-
tem provides waveform data in miniSEED format, which we
then convert to Seismic Analysis Code (SAC) format to use
the SAC waveform processing subroutines (see Data and
Resources).

Methods

Source Spectral Analysis and Dynamic Stress Drop

Measurements of the dynamic properties of the earth-
quake source, including the dynamic stress drop Ao, are
derived from spectra of earthquake waveforms. We obtain
estimates of Ao for the earthquakes in our study region using
the spectral decomposition approach described in detail by
Trugman and Shearer (2017) and summarize only the essen-
tial points of the algorithm here. As discussed by Atkinson
and Beresnev (1997) and others, it is important to understand
that the dynamically measured Ao based on the Brune (1970)
model of earthquake source spectra may differ from the true
static stress release on the fault plane, and hence the dynamic
Ao is more precisely considered a measure of the frequency
content of the earthquake source. For this reason, Ao is often
referred to as the stress parameter, rather than the stress drop,
in the ground motion and earthquake hazard literature, but
we continue to use the term stress drop for consistency with
previous earthquake-source studies.

The conceptual framework underlying the spectral
decomposition method can be understood by noting that for
sufficiently large and well-recorded waveform datasets, such
as that of our Bay area study region, each earthquake is
recorded by many stations, each station records many earth-
quakes, and each source—receiver ray path is sampled (to
good approximation) many times. Thus, each of the three
main contributions to the observed waveform spectra (the
source, the path, and the site) have sufficient observational
constraints to be resolved as part of an overdetermined
inverse problem. Consider the waveform spectra d;;(f) of
event i recorded at station j, which in general is a convolu-
tional product of source, site, and path effects. In the log fre-
quency domain, these three contributions are additive, and
thus the d;; at a given frequency f can be decomposed into
a linear equation of the form

dij =e; + st; + thy; ;) + rijs 1)

in which e; and st; denote the relative contribution of the
source and station, ff; ; is a travel-time-dependent path
term that we approximate as isotropic and parameterize into
k discrete travel-time bins of 0.5 s width, and r; ; is a residual
error term.

The spectral decomposition method comprises four
basic steps:

1. compute P-wave displacement spectra d;;(f) for each
waveform record;
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2. decompose these waveform spectra into relative source,
station, path, and residual terms by solving equation (1)
at each frequency point;

3. estimate the empirical correction spectrum that best
captures path effects common to all sources, such as aver-
age near-source and near-receiver attenuation;

4. use the corrected source spectra to obtain stress-drop
estimates and uncertainties.

We proceed as follows to apply the spectral decompo-
sition workflow summarized above to the earthquakes in our
Bay area dataset. For each event, we compute the P-wave
spectra from the vertical component of high-broadband and
short-period channels (HN, HH, and EH, with a preference
for HN when available) of all NCSN stations within 100 km.
These spectral estimates are obtained using a multitaper
algorithm (Park et al., 1987; Prieto et al., 2009) and a
temporal window that begins 0.05 s before the catalog listed
P-phase arrival time. Each temporal window bracketing the
P-phase arrival has a window length that ranges from a mini-
mum of 1.5 s to a maximum of 4.5 s, with longer windows
applied to larger-magnitude events (Ross et al., 2016; Aber-
crombie et al., 2017; Trugman et al., 2017). We discard clipped
waveforms and those with obvious noise spikes, using an au-
tomatic detection algorithm based on the observed signal am-
plitude distribution (Trugman and Shearer, 2017; Trugman
et al., 2017). We ensure adequate data quality and station cov-
erage by only considering events recorded by at least six sta-
tions in which the average signal-to-noise amplitude is greater
than 3 in each of five frequency bands: 2.5-6, 6-10, 10-15,
15-20, and 20-25 Hz. We also limit our analyses to NCSN
stations that have recorded at least 50 different events.

We next convert the remaining, quality-controlled spec-
tra d;; to units of displacement and solve equation (1) using
an iterative, robust, least-squares inversion algorithm with
outlier suppression. This spectral decomposition is effective
in isolating the relative contributions of source, path, and site
at each frequency point, not their absolute values. To yield
source parameter estimates compatible with the Brune
(1970) model, it is therefore necessary to apply an empirical
correction term that represents path and site effects that are
common to all sources, including the average near-source
and near-receiver attenuation (relative differences in average
site attenuation are incorporated into the station terms st;
themselves). To do so, we use the approach described by
Trugman and Shearer (2017) that infers the optimal empirical
correction by fitting stacked relative source spectra (Fig. 2a),
averaged in bins of spectral moment, to a Brune-type
theoretical spectrum of the form

. Q
5(f100. ) = , @)
’ L+ (f/f)?
in which € is the long-period spectral moment of each stack
(and is proportional to seismic moment) and f. is the best-
fitting corner frequency. We fix the high-frequency spectral
fall-off rate to a value of 2 per the canonical =2 spectral
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Figure 2.  Stacked relative and corrected source spectra from earthquakes in the San

Francisco Bay area. (a) Stacked relative source spectra, binned by spectral moment €2,
(logarithmic scale), prior to the application of the empirical correction term that accounts
for common path effects. (b) Corrected source spectra (solid lines) and comparison to
Brune-type theoretical spectra (dashed lines). The implied corner frequency of each
stack and the correction spectrum (upward-trending solid line; subtracted from the rel-
ative spectra to obtain the corrected spectra) are marked for reference. The color version

of k is a modeling assumption that
influences the absolute values of Ac, the
relative values and variations in Ao that
are of direct relevance to this study are un-
affected by this choice.

Seismic moment M, and moment
magnitude M,, cannot in general be ob-
tained directly from the NCSN catalog, be-
cause listed magnitudes are of mixed type
but are typically duration magnitude Mp,
for smaller earthquakes. For stress-drop
and GMPE analyses, M, is more appro-
priate. To obtain a uniform set of M,
estimates for our dataset, we follow the
approach of Shearer er al. (2006) that
assumes on average seismic moment
should be proportional to the long-period
spectral moment (), but this scale factor
is unknown. The regression between (),
and Mp is used find the expected value
of Q as a function of M. Because Mp
and M, converge at M ~ 3.5 for earth-
quakes in California (e.g., Hawthorne et al.,
2016), we can use this relationship to solve
for the scaling factor and thus convert spec-
tral moment to seismic-moment estimates
for all earthquakes, and in turn, calibrate
arelation between M, and M, (€ Fig. S1,

of this figure is available only in the electronic edition.

model (Aki, 1967; Brune, 1970). Our technique differs from
the stacking approach of Shearer et al. (2006) in that it does
not presume self-similar scaling of the stacked spectra
(Fig. 2b). A notable advantage of spectral decomposition
is that the inference of the empirical correction term is based
entirely upon the shape of the stacked spectra within the
2.5-25 Hz frequency band (for which we verified that the
signal-to-noise amplitude is greater than 3) and thus does
not require resolving corner frequencies of individual events.
We assume a spatially uniform correction term for the results
presented in this study, which is justified based on sensitivity
tests in which we found that permitting smooth lateral var-
iations in the inferred correction term produces statistically
insignificant differences in the final results.

The corrected source spectra are used to estimate two
source parameters, seismic moment M, and Brune corner
frequency f., which are required to compute the dynamic

stress drop
_7 fe\

(Brune, 1970; Madariaga, 1976), in which f is the shear
wavespeed, and k is a numerical factor that we set to 0.38,
following Kaneko and Shearer (2014). Although the choice

available in the electronic supplement to
this article). The smallest earthquakes in
our dataset correspond to M, 1.9.

We obtain f,. estimates for each event using a bounded
optimization algorithm that minimizes the root mean square
(rms) residual between the corrected relative source spectrum
s5;(f) and the Brune theoretical spectrum 5;(f|f.) in the 2.5~
25 Hz band in which we measured adequate signal-to-noise.
To compute Ao given My and f., we use a fixed shear wave-
speed f in equation (3) for consistency with previous studies
of the influence of Ao on ground motion (Atkinson and
Morrison, 2009; Bozorgnia et al., 2014; Baltay et al., 2015),
and, as such, Ao should be interpreted as a dynamic source
parameter rather than an unbiased estimator of the static
stress release. Lastly, we derive uncertainty estimates for
M,, f., and Ac using a bootstrap-resampling procedure
(Trugman and Shearer, 2017) that assesses the variability
in the measured source spectra at each station.

Peak Ground Acceleration and the Random Forest
GMPE

Because our objective is to analyze the extent to which
Ao influences ground-motion intensity (PGA), we require
(1) measurements of PGA at the stations recording the events
comprising our dataset and (2) a model of how median PGA
values should be expected to vary as a function of distance,
magnitude, site, and other effects unrelated to the dynamic
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properties of the earthquake source. In this section, we
describe both our procedure to obtain PGA measurements
for this dataset and our approach to model PGA using a
data-driven GMPE based on a Random Forest regression
algorithm.

Although the Next Generation Attenuation-West 2
(NGA-W?2) database (Bozorgnia ef al., 2014) includes high-
quality ground-motion records of a small subset of the events
in our dataset, most of the events we consider are unlisted. To
compile a complete and self-consistent PGA database, we
compute PGA as follows. For each event, we consider
horizontal-component records of stations within 100-km
source—station distance (consistent with the data selection for
the Ao computations described in the Source Spectral Analy-
sis and Dynamic Stress Drop section). Using the SAC wave-
form analysis software, we then demean and detrend each
record, remove the instrument response, and convert to units
of acceleration where necessary. Our implementation of the
SAC transfer command to remove the instrument response
applies a band-pass filter with a low-pass transition band
from 0.3 and 1.5 Hz and a high-pass transition band from
30 and 40 Hz. The latter corresponds to a significantly higher
upper corner than is used for the NGA-W2 database
(Bozorgnia et al., 2014), but this modification is necessary
to analyze the lower magnitude events that comprise the
majority of our dataset. We then use an automated procedure
to discard records that have high-amplitude noise spikes or
low signal-to-noise rms amplitudes relative to a pre-event
time window. We also exclude a small subset of events with
origin times that are nearly overlapping (within 45 s spacing
of each other), because in these cases the attribution of peak
ground motions to one event or another becomes ambiguous.
For the remaining quality-controlled records, we compute
PGA from the geometric mean of both horizontal compo-
nents. For most events, the peak amplitude is from the S
wave or surface wave, whereas our dynamic Ac estimates
are derived from P-wave spectra, which are less affected
by attenuation and most clearly recorded on the vertical com-
ponent. Our PGA estimates are in good agreement with re-
spect to records that are cross-listed in the NGA-W?2 database
(® Fig. S2). Although the nonparametric ground-motion
modeling procedure described below permits the use of seis-
mic stations without published metadata, such as site classi-
fication or V g3, we note for reference that most of the NCSN
stations considered in this study are of National Earthquake
Hazard Reduction Program site class B or C, with typical
V3 values ranging from 200 to 800 m/s.

Ground-motion intensity measures such as PGA are typ-
ically modeled using GMPEs based on linear regression. Such
GMPE:s predict the expected level of ground motion y (log-
arithmic units) as a linear combination w of input features X
that are thought to influence ground-motion amplitudes:

5 = Xw. (4)

The feature matrix X typically includes (but is not limited to)
the magnitude (usually M,) of the earthquake and a measure
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of the distance R from the station to the source (usually epi-
central distance, hypocentral distance, or finite-fault general-
izations, such as the Joyner—Boore distance). In recent years,
GMPEs based on linear regression tended to become more
complex to accommodate a larger selection of potential input
features, higher-order (e.g., quadratic) terms, and interaction
terms among predictor features, such as magnitude and dis-
tance (e.g., Campbell and Bozorgnia, 2008; Boore et al.,
2013; Yenier and Atkinson, 2015).

Typically, the performance of the GMPE is measured in
terms of its uncertainty, often denoted as ¢ and defined as the
standard deviation of the distribution of residuals between
the observed and GMPE-predicted ground-motion intensity
(both measured in logarithmic units). Reduction in the
uncertainty of the GMPE is appealing because it leads to im-
proved accuracy in seismic hazard forecasts, especially over
long time horizons. However, because o is measured with
respect to the dataset used to fit the model, it is not a measure
of the uncertainty with respect to future predictions (e.g.,
Hastie er al., 2009; Murphy, 2012). Thus, a reduction in the
total ¢ through increased model complexity is only beneficial
in cases in which the performance of a model that is devel-
oped on the input (or training) dataset is validated by a
corresponding decrease in ¢ with respect to an independent
testing dataset (Bindi, 2017; Mak et al, 2017). Further,
GMPEs based on standard linear regression techniques may
produce systematic residuals as a function of M and R if the
true interaction between features deviates from the assumed
linear model (Bishop, 2006) or if the number of observations
varies significantly with M or R, as is often the case in circum-
stances with limited data availability.

To study the relative influence of Ac on PGA for our
study, we require a GMPE with the following properties:

1. it is applicable to the ground motions of moderate mag-
nitude earthquakes within the Bay area and is valid to (at
least) 100-km hypocentral distance;

2. it can be used to correct the observed PGA for the poten-
tially nonlinear influence of and interactions between
magnitude, distance, and site, which we postulate are
the primary features controlling ground motion within
this regime unrelated to dynamic earthquake source prop-
erties;

3. it does not produce systematic misfits as a function of
magnitude or distance that may bias our interpretation
of residual PGA in relation to Ac;

4. it provides a comparable or better GMPE uncertainty o as
compared to established linear regression techniques, as
well as a means to assess whether this improved perfor-
mance is generalizable to an independent dataset;

5. it is robust with respect to outlier data points, which are
more common for the recordings of smaller-magnitude
events that are an important part of our dataset.

With these requirements in mind, we develop a data-driven
GMPE based on a statistical modeling technique known as a
Random Forest (Breiman, 2001). Although application of
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Random Forests to regression problems is well established
within the pattern-recognition and machine-learning commu-
nity (Bishop, 2006; Geurts et al., 2006; Hastie et al., 2009),
to our knowledge this is the first application to the modeling
of earthquake ground motions. Random Forest regression
models are particularly suitable for our purposes because of
their capability to handle nonlinear feature influence and in-
teraction, their robustness with respect to data outliers and co-
dependent features, and their ability to automatically assess
the predictive performance of the model (Fernandez-Delgado
et al., 2014; Louppe, 2014).

Random Forests use an ensemble learning approach in
which a set of randomized and decorrelated decision tree re-
gressors are trained independently to predict ground-motion
amplitudes, with the final prediction of the Random Forest
based on an ensemble average of the individual trees.
Individual decision trees are trained through an iterative
algorithm that recursively partitions the feature space of pre-
dictor variables (Bishop, 2006; Hastie et al., 2009). Although
decision trees can be effectively employed in certain classi-
fication or regression problems, they are sensitive to noise in
the training data and may generalize poorly to independent-
testing data (Murphy, 2012). In a Random Forest, each
decision tree in the ensemble forest takes a bootstrap resam-
pling of the original training dataset as input, and at each
node in the tree a random subset of the features is considered
for partitioning. This multiscale randomization and decorre-
lation of individual tree-based regressors helps reduce the
variance in an ensemble prediction through averaging and
mitigates the tendency of individual trees to overfit their
training dataset and hence provide poor generalization to
independent-testing data (Breiman, 2001).

Our implementation of the Random Forest GMPE
makes use of the publicly available scikit-learn Python
programming package (Pedregosa et al., 2011; see Data and
Resources), with some GMPE-specific algorithm modifica-
tions that we describe below. Specifically, our input dataset
consists of the measured PGA for the subset of well-recorded
events for which we obtained estimates of M, and Ao (see
the Methods section). We use Random Forest to model the
measured PGA values as a nonparametric function G* of
moment magnitude M,, and hypocentral distance log Ry,
and treat the contribution of each event APGA; and station
AS; as random effect terms

1 B
logPGA =EZG‘§ (M, 10gRy,) +APGA; +AS;  (5)
b=1

(e.g., Abrahamson and Youngs, 1992; Stafford, 2014). The
summation in equation (5) is an ensemble average of B ran-
domized regression trees that are fit to bootstrap-resampled
datasets. We apply an iterative procedure to estimate the
event and station terms APGA; and AS; from the mean
model residuals, and in practice the algorithm converges after
only 2-3 iterations. Defined in this way, the APGA; values

measure the empirical contribution of each event i to the
observed ground-motion amplitude (after controlling for mag-
nitude, source-receiver distance, and site), and the distribution
of APGA is a measure of between-event variability. It is
important to note that to apply the Random Forest GMPE to
predict ground motions for a new set of earthquakes, the sta-
tion terms AS ; will be known, but in general the event terms
APGA; will be unknown a priori. In this case, the expected
total variability in the ground motion from the model predic-
tion o> can be partitioned into between-event variability,
defined by the distribution of APGA, and within-event
variability, defined by the distribution of GMPE model resid-
uals (e.g., Atik et al., 2010; Baltay et al., 2017).

The fitting procedure of each tree involves repeatedly
partitioning the input data in feature space. We use scikit-
learn’s ExtraTreesRegressor algorithm (Geurts ef al., 2006)
for this purpose to provide an additional layer of randomi-
zation of the partitioning level (rather than greedy optimiza-
tion), which further helps decorrelate the individual trees. At
each node in a given tree, the algorithm randomly selects one
of the two features (M, or log Ry,,,) for partitioning. Rather
than optimizing performance or misfitting to the training data
itself, we can use the Random Forest to synthesize an inde-
pendent-testing dataset without explicitly withholding a sub-
set of input data. To do this, we take advantage of the fact
that, for each tree in the Random Forest, bootstrap resam-
pling leaves out approximately one-third of the input data.
These excluded data points are known as out-of-bag samples,
and each tree has a different subset of in-bag and out-of-bag
samples. For a sufficiently large number of trees (we use
B =200 in this study), each data point will be left out-of-
bag by multiple trees, where it can then be leveraged as part
of an independent-validation dataset with minimal computa-
tional effort. We can use this property to optimize predictive
performance by constraining the maximum depth of the indi-
vidual trees that comprise the Random Forest. Minimization
of the misfit with respect to the set out-of-bag samples yields
an optimal tree depth of 18 (® Fig. S3), which is itself a
conservative choice that errs on the side of underfitting rather
than overfitting, due to the slight bias in the out-of-bag
misfit-error estimate compared to the true prediction error
(Breiman, 2001; Louppe, 2014).

Results

In total, 5297 events within our study region are suffi-
ciently well recorded to meet our quality control criteria for
measurements of Ac and PGA. Overall, we found that the
Ao estimates of these events closely follow a lognormal
distribution with a median value of 2.95 MPa and a log;q
standard deviation of 0.40. We observe a mild increase of
Ao with M, (Fig. 3), which we can quantify in terms of a
scaling parameter €; that measures the slope of the increase
in log;y Ac with log;o M:

10g10 Ac = € + €] logm Mo. (6)
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Distribution, scaling, and depth dependence of M, f., and Ac. (a,b) Corner frequency f,. and stress drop Ao are plotted versus

seismic moment M. Point markers correspond to measurements of source properties for individual events and the median f,. and Ac in M
bins of width 0.4 (log;, N-m units) are marked with squares. The best-fitting scaling parameter ¢, for the binned data is plotted with a solid
line, with its numerical value and 2o uncertainty listed in the legend of (b). The dashed lines in (b) correspond to constant A contours of 0.1,
1, 10, and 100 MPa. Open circles denote events with poorly resolved corner frequencies due to bandwidth limitations (f,. > 25 Hz or
bootstrap interquartile uncertainty > 5 Hz). (c—e) The depth dependence of f., Ao, and M, with the trend of median values in bins of

2-km width marked with solid lines. The color version of this figure is available only in the electronic edition.

A weighted regression analysis based on median values in
bins of width 0.4 in log,;y M, yields a scaling parameter
€1 = 0.06, which is consistent with the scaling inferred
from the shape of the stacked spectra (Fig. 2) but shallower
in slope and hence closer to the self-similar value of e, = 0
than any of the five southern California study regions
analyzed by Trugman and Shearer (2017).

Both f. and Ao increase slightly as a function of depth
within the upper 8 km of the crust (Fig. 3c,d), but we do not

observe an analogous depth dependence in M, (Fig. 3e). These
trends would be consistent with an increase in average rupture
velocity with depth, although other systematic variations in
rupture characteristics or fault geometry may also contribute.
If we examine the spatial patterns of Ao in map view (Fig. 4),
we observe variations in median Ac on regional-length scales,
but significant coherence in Ao within more localized and spa-
tially compact clusters of events. For example, A¢ values are
relatively high along the peninsular San Andreas fault and the
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Figure 4.  Spatial variations in (a) stress drop Ac and (b) between-event ground-motion residual APGA (peak ground acceleration), for

events within the San Francisco Bay area study region. The color version of this figure is available only in the electronic edition.

southern portion of the Calaveras fault to the south of its junc-
tion with the Hayward fault. Median A¢ values are markedly
lower along the northern segment of the Calaveras fault near
the Mt. Diablo thrust and the stepover with the Concord-Green
Valley fault. Seismicity along the Hayward and Rodgers
Creek faults tends to exhibit intermediate Ao values, though
with some systematic along-strike variations.

The GMPE modeling procedure described in the Meth-
ods section provides estimates of the between-event residual
ground motions (APGA) that measure the deviation between
the observed and model-predicted ground-motion amplitude.
We observe a strong correlation between Ao and APGA
(Fig. 5), which suggests that variations in dynamic source
properties have a significant influence on the between-event
variability in ground motion. For example, an increase in
stress drop by a factor of 10 would be expected to produce
a corresponding increase in PGA by factor of 2.5. The strength
of this correlation increases as a function of magnitude, with a
correlation coefficient of 0.46 for M, < 2.25, compared to
0.62 for 2.25 < M,, < 2.50 and 0.74 for M,, > 2.50. The
magnitude dependence of this correlation is expected, because
the effects of attenuation on PGA are more severe for smaller-
magnitude earthquakes (e.g, Baltay and Hanks, 2014). It is
also notable that the variability in APGA increases signifi-
cantly with magnitude, with a log;, standard deviation in

APGA of 0.11 for M, < 2.25 and 0.13 for 2.25 < M, <
2.50, compared to 0.18 for 2.50 < M, < 3.00 and 0.26 for
3.00 < M,, < 4.00. Meanwhile, the variability in Ao is nearly
constant with magnitude. We consider this effect further in the
Discussion section.

In map view, the spatial patterns of APGA mirror those of
Ao (Fig. 4), with spatial coherence on local length scales but
significant variations in median values across the study region.
The strength of the correlation remains unchanged, whether one
considers the absolute value of As or a magnitude-adjusted,
relative stress drop (Trugman and Shearer, 2017) that corrects
for the mild increase in A with M, (B Fig. S4b). In contrast,
the event term APGA exhibits a rather weak relationship with
source depth () Fig. S4c), except perhaps for the shallowest of
source depths (0-3 km) where rupture of weaker lithology may
tend to reduce ground-motion amplitudes. Likewise, the strong
observed correlation between Ac and APGA is not simply a
result of the observed depth dependence of Ao, because the
correlation remains nearly as strong () Fig. S4d) if we com-
pute a depth adjustment to our Ac estimates based on the
median trend with depth shown in Figure 3d.

The Random Forest GMPE provides a consistently good
fit to the observed distribution of PGA and does not exhibit
any significant biases with magnitude, distance, or site
(Fig. 6a). To get a sense for the performance of this model
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Figure 5. Correlation between stress drop Ac and between-event residual APGA for events within the San Francisco Bay area study
region. Each panel corresponds to events within four distinct magnitude ranges: (a) 2.00 <M, <2.25, (b) 2.25 <M, <2.50,
(c)2.50 <M, £3.00, and (d) 3.00 < M, <4.00. The number of events N, the log;, standard deviations s,, and sapga, and the correlation

coefficient r.,, are labeled in the legends.

relative to linear GMPEs, we compare the Random Forest
GMPE to two analogous mixed-effect linear regression
models (e.g., Campbell and Bozorgnia, 2008; Bindi et al.,
2011; Kurzon et al., 2014) of the form

10g§;=a0+a1M+a210gR+APGA,~+ASj (7)

log)A/ = bo + (bl + sz) lOgR + b3R
+ byM + bsM* + APGA; + AS;, ®)

in which {a;} and {b;} are linear regression model coeffi-
cients and APGA; and AS; are event and station random-
effect terms analogous to those in the Random Forest GMPE.
Equation (7) is a relatively simple first-order linear regression
model (Fig. 6b) that accounts for the first-order influence
of magnitude, geometrical spreading, and site, whereas the
model described by equation (8) allows for more complexity
(Fig. 6¢) through higher-order features, interaction terms, and
a linear term in R to account for attenuation. In both cases, the
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Figure 6.

Random Forest ground-motion prediction equation (GMPE) model fit and comparison to mixed-effect linear regression. In

each panel, measured PGA is plotted as a function of Ry, (log-log scale). Median values of measured PGA are marked for reference for
M., 4 ranges: M 2.2-2.6, 2.6-3.0, 3.0-3.4, and 3.4-3.8. Corresponding model predictions for these magnitude ranges are shown with dashed
lines. Both the observations and model predictions have been corrected for station effects based on the station terms inferred using the
iterative procedure described in the Methods section. (a) The model fit for the Random Forest GMPE. (b,c) Model fits for the first-order
and the second-order linear regression models defined by equations (7) and (8). Note that station-term correction causes the regression
models in (b) and (c) to deviate slightly from expected linear and quadratic trends. The root mean square misfit ¢ is significantly lower
for the Random Forest model than for the regression models (0.634, compared to 0.698 and 0.679). The color version of this figure is

available only in the electronic edition.

Random Forest GMPE provides a better fit to the data, both in
terms of the total misfit o (0.634 in logarithmic units for the
Random Forest, compared to 0.698 and 0.679 for the regres-
sion models) and its lack of systematic trends in misfit as
a function of M and R (Fig. 6). For this comparison, it is
important to note that we guarded against the potential that the
Random Forest GMPE overfit the data using the out-of-bag
sampling procedure described in the Methods section.
Although it may be possible to devise a more complex linear
regression model to match its performance, this simple experi-
ment is sufficient to motivate the use of the Random Forest
GMPE for our purposes.

From a practical perspective, one question of interest is
whether or not there are systematic differences in the distri-
butions of Ac or APGA between mainshock and aftershock
events. Many established GMPE models either exclude after-
shock events entirely from the model fit or explicitly include
an adjustment factor that quantifies the difference in ex-
pected ground-motion intensity of mainshock and aftershock
classes of events (Douglas and Edwards, 2016). However,
distinguishing between mainshock events and their associ-
ated aftershocks is often difficult in practice, as exemplified
by the wide range of plausible declustering algorithms
designed to accomplish this task (van Stiphout et al., 2012).
The classical space—time windowing method of Gardner and
Knopoff (1974) is widely used for this purpose in studies of
large-magnitude mainshock—aftershock sequences, in part

due to its simplicity and insensitivity to the absence of
smaller events in a given ground-motion database (Wooddell
and Abrahamson, 2014). However, the Gardner and Knopoff
(1974) declustering algorithm is not optimal for use in this
study for two reasons. First, the formulas for the space—time
windows are designed for larger magnitudes than those that
comprise much of our dataset, and an extrapolation leads to
poorly defined mainshock—aftershock classifications. Sec-
ond, the Gardner and Knopoff (1974) algorithm cannot be
used directly to group events into individual mainshock—
aftershock sequences, due to the nonuniqueness that occurs
in cases of overlapping space—time windows.

We instead apply the magnitude—space—time nearest-
neighbor method of Zaliapin and Ben-Zion (2013), which has
been used effectively to characterize clustered seismicity in
numerous previous studies. The nearest-neighbor algorithm
is more complicated and has more free parameters to consider
than Gardner and Knopoff (1974) declustering, but is appro-
priate for the magnitude of our dataset and has the additional
advantage that it can be used to define individual sequences
of events in which the nearest neighbors are closely linked
in distance—time—-magnitude space. For the purposes of this
study, we denote the largest event in each sequence as a main-
shock (including those events within singleton sequences) and
denote the remaining events as aftershocks. In applying the
Zaliapin and Ben-Zion (2013) algorithm, we use the full
set of M > 1.1 earthquakes located within 0.2° latitude and



940

longitude of our study region that are listed in the relocated
catalog of Waldhauser and Schaff (2008) (80,761 events in
total). Doing so helps mitigate potential clustering artifacts
related to the edge effects of events outside of but adjacent
to our study region in space and time, as well as those within
our study region but beneath the nominal completeness of our
GMPE database.

If one compares the distribution of Ac for events clas-
sified as mainshocks and aftershocks (Fig. 7a), it is apparent
that the mainshocks exhibit systematically higher values of
Ao than do aftershocks of equivalent moment. The difference
between the median Ao values of mainshocks and after-
shocks is slightly larger for high M, events than for low M,
events, and indeed the two classes are virtually indistinguish-
able for the smallest events in our dataset. An analogous
trend is observed for the between-event residual APGA
(Fig. 7b), which is to be expected given the strong correspon-
dence between Ac and APGA. These results are broadly
consistent with previous studies examining the short-period
ground-motion amplitudes of larger-magnitude mainshocks
and aftershocks (Campbell and Bozorgnia, 2008; Boore
et al., 2013; Wooddell and Abrahamson, 2014; Yenier et al.,
2017). The existing literature on possible mainshock-versus-
aftershock differences in Ao is more equivocal, with various
studies finding similar results to those presented here (e.g.,
Izutani, 2005; Mayeda et al., 2007; Boyd et al., 2017;
Cramer, 2017; Sumy et al., 2017), whereas others observe no
such trend (e.g., Allmann and Shearer, 2009; Viegas et al.,
2010; Baltay et al., 2013; Abercrombie et al., 2017).

As noted above, the nearest-neighbor method of Zalia-
pin and Ben-Zion (2013) can be used to group events into
individual earthquake sequences that are clustered in space
and time. We use this framework to examine Ao and APGA
for the most prominent sequences in our dataset. We limit our
analysis to sequences in which the largest event (the main-
shock) has M,, > 3.0 and contain at least 10 other (after-
shock) events with measured values of Ac and APGA.
Mainshock Ao estimates are higher than the median value
for all 10 sequences (Fig. 7c) that meet this criteria, whereas
the same is true for APGA for 9 of the 10 sequences (Fig. 7d).
Median sequence values of Ac and APGA are strongly
correlated, whereas the correlation for within-sequence vari-
ability is somewhat weaker but still significant. These obser-
vations suggest that analysis of the relation between source
parameters and sequence-specific ground-motion data may
warrant further consideration for operational earthquake
forecasting and real-time hazard assessment (e.g., Jordan
et al., 2011; Page et al., 2016).

Discussion

In this study, we present evidence for a strong correla-
tion between dynamic stress drop (Ao) and residual ground
motion (APGA). Although this correspondence has been
previously documented for large earthquakes, our study
brings to light several new aspects of this relation that have
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important implications for our understanding of how vari-
ability in earthquake source properties can influence earth-
quake hazard. First, we augment the existing literature with
a new, jointly derived dataset of source-parameter and
ground-motion estimates for contemporary seismicity in
the San Francisco Bay area ((E) Table S1). The events
included within this dataset sample a wide magnitude range
and include smaller-magnitude events than is typical for
ground-motion studies, allowing us to examine how the re-
lationship between Ao and between-event variability in PGA
varies as a function of magnitude. In so doing, we find that
the observed correlation between Ao and PGA weakens with
decreasing magnitude but is still apparent for the smallest
events in our dataset.

The relation between Ao and PGA has been studied
extensively using theoretical point-source models and ran-
dom-vibration theory (Boore, 1983, 2003; Baltay and Hanks,
2014; Yenier and Atkinson, 2014), in which the acceleration
spectra are typically assumed to be Brune type and thus flat
within the frequency band f. < f < f.x. In this model, the
parameter f.. is used as a proxy for the effects of attenu-
ation, especially in the shallow subsurface near the site
(Hanks, 1982; Anderson and Hough, 1984). The observed
increase in the strength of the correlation between Ao and
APGA with increasing magnitude is consistent with the pre-
dictions of this model, because smaller magnitude events
have higher f. on average and, thus, less bandwidth between
feand f ... However, the fact that we still observe a signifi-
cant correlation between Ac and APGA, even for the small-
est events in our dataset, is unexpected in this context (Baltay
and Hanks, 2014) and is perhaps suggestive of the limitations
in validity of these theoretical models of acceleration spectra
within this regime.

Studies of smaller-magnitude events are also useful in
the sense that they can provide a sufficient density of events
to examine spatial variations in source properties or ground-
motion amplitudes. Earthquakes in our study region exhibit
both local coherence in median Ao and APGA, as well as
systematic variations in these median values over larger
regional-length scales throughout the Bay area. If this find-
ing, that the distribution of Ac and hence APGA, varies as
a function of source region is robust, it would provide an
important observational constraint for the reduction of
epistemic uncertainty in ground-motion models through
the removal of the ergodic assumption (Anderson and Brune,
1999; Atik et al., 2010; Lin et al., 2011; Stafford, 2014,
Ameri et al., 2017; Baltay et al., 2017). One relatively simple
implementation of nonergodicity would be to allow pre-
dicted ground motions to vary as a function of source region,
guided by the spatial statistics and correlation-length scales
of the Ao estimates. This model would effectively assume
time stationarity in average source properties and that the
spatial distribution of stress drop inferred from moderate
seismicity is generalized to the larger events that drive
regional earthquake hazard. Both of these topics warrant fur-
ther study.
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The between-event variability in APGA for events in our
dataset is significantly less (log;, standard deviation of 0.16)
than would be implied by the between-event variability in Ac
(log standard deviation of 0.40). This paradox has been dis-
cussed in many previous studies (e.g., Baltay et al., 2013;
Cotton et al., 2013; Oth et al., 2017), and we do not presume
to offer a satisfactory resolution, only additional observatio-
nal constraints. Measurements of ground-motion amplitudes
are relatively simple and require fewer modeling assump-
tions than analogous source—spectral estimates. It is therefore
possible that the combined effects of measurement uncertain-
ties (e.g., precision in the resolution of the corner frequency)
and uncertainties associated with the model parameterization
(e.g., the deviation of the spectra of real earthquakes from the
idealized Brune model) may account for a significant frac-
tion of this disparity. The fact that the nominal measurement
uncertainties in Ao, as computed from a bootstrap analysis of
the apparent source spectra (Trugman and Shearer, 2017), are
comparable to the within-event variability in PGA (median
log;, values of 0.219 and 0.214, respectively) suggests that

modeling parameterization uncertainty may indeed be an
important consideration. Another key difference is that mea-
surements of Ac¢ that are derived from source spectra must
explicitly account for ray path and near-site attenuation,
whereas measurements of ground-motion intensities are
effectively dampened because they apply no such correction
for attenuation and are further bandlimited through the
application of bandpass filtering. Damping PGA variability
from attenuation effects should be stronger for smaller earth-
quakes because of their higher concentration of spectral en-
ergy at high frequencies. Our results support the importance
of this damping effect, because the variability in APGA
is observed to increase significantly with magnitude (Fig. 5),
whereas the variability in Ac does not. For M, 3—4 earth-
quakes, the ratio of log APGA to Ac variability is 0.58, only
30% less than the theoretically expected value of 5/6 (Cotton
et al., 2013) in the absence of attenuation.

One further issue we can address using the Random
Forest GMPE is the possibility that the measured between-
event variability in PGA is biased downward, which could
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potentially occur if true dynamic source effects are absorbed
into the modeled ground motions. To test for this possibility,
we generate a synthetic PGA dataset in which we replace the
measured between-event residual APGA; with a synthetic
residual SPGA; equal to the deviation in PGA predicted by
the deviation do; in stress drop from the average value

5
5PGA, = 6 66,’ (9)

(Cotton et al., 2013), in which 6PGA and 6o are both
measured in consistent logarithmic units. We then apply the
algorithm described in the Methods section to fit the syn-
thetic dataset with a Random Forest GMPE and hence derive
model estimates of the between-event residuals of the syn-
thetic dataset. The estimated synthetic residuals closely
match the input synthetic distribution and are thus consistent
with the observed Ae¢ variability (€ Fig. S5), which sug-
gests that we can rule out GMPE modeling artifacts of this
type as the cause of the disparity between the variability in
ground motion and stress drop.

A final point worthy of discussion is our new approach
to GMPE modeling based upon a mixed-effect generalization
of the Random Forest algorithm. There are advantages and
disadvantages inherent in using this technique, but we argue
that the former outweigh the latter for the purposes of this
study and perhaps for several other potential applications of
ground-motion modeling and estimation. The most appeal-
ing aspect of the Random Forest in the context of GMPEs is
the ability to use an arbitrarily complex set of features to
make robust predictions without the need to specify a para-
metric form for the relationship between these predictive fea-
tures and PGA. The Random Forest GMPE described in this
study is simplistic in that it only uses two such features, mag-
nitude and source-site distance, to predict PGA, but the same
basic framework could easily be extended to include a much
wider range of potential predictor features and to make
predictions for other ground-motion intensity measures. This
would be particularly useful for GMPEs designed to predict
ground-motion intensity of large-magnitude events, in which
predictive features related to finite-fault rupture, such as
hanging-wall effects and directivity or those related to non-
linear site response, could be included in the model without
defining a functional form for their influence on ground-
motion intensity. One could then easily evaluate which of
these input features provides the most fundamental con-
straints on predicted ground motions using the metrics of fea-
ture importance derived from the Random Forest model fit
(Breiman, 2001; Pedregosa et al., 2011).

The primary disadvantage to the Random Forest
approach is that its lack of a parametric form makes it more
difficult to interpret and to apply by external-user groups that
are not involved in the model-development process. How-
ever, this drawback may be overcome with only modest
knowledge of computer programming and statistical theory
(see (B Script S1 for an example). Indeed, nonparametric
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GMPEs using artificial neural networks have already dem-
onstrated significant promise in ground-motion modeling
and hazard applications in Japan (Derras et al., 2012) and
Europe (Derras et al., 2014). As is the case for such neural
network GMPEs, the nonparametric form of the Random
Forest is critical to its performance, because it mitigates the
tendency for parametric models to introduce biased predic-
tions or model residuals that vary systematically as a function
of magnitude and distance. Although Random Forest regres-
sors are slightly less computationally efficient than neural
networks, they do have some powerful advantages in the
context of ground motion and hazard estimation. Random
Forest models benefit from their simplicity of use and design.
Unlike a neural network, there is no need to choose the num-
ber of hidden layers or the distribution of neurons within
these layers, adjust the layer activation function or regulari-
zation, or normalize the input and output data. Instead, the
algorithm used to train each tree in the Random Forest auto-
matically searches for and iteratively refines an optimal par-
titioning in feature space to minimize the predictive misfit.
This procedure, when combined with ensemble averaging of
randomized and hence decorrelated individual trees, helps
ensure that the Random Forest predictions are both robust
to data outliers and are valid locally within feature space.
Lastly, Random Forest regressors automatically provide a
means of predictive validation through the evaluation of the
out-of-bag o, and in this way allow the user to assess its
expected performance and uncertainty with respect to future
predictions.

Summary

We examine the relation between Brune-type stress drop
(Ao) and ground-motion amplitudes (PGA) for M 1-4 earth-
quakes that occurred near the San Francisco Bay area, Cal-
ifornia, from 2002 through 2016. We estimate Ao for each
event using a spectral decomposition method applied to ver-
tical-component P-wave spectra recorded by NCSN stations
within 100 km. We then measure PGA from horizontal-
component channels of the same set of stations and develop
a nonparametric GMPE using a mixed-effect implementation
of the Random Forest algorithm. We use the Random Forest
GMPE to examine between-event variability in ground mo-
tion by defining event terms APGA as the average residual
between the observed and model-predicted ground motion,
given magnitude, distance, and station. The between-event
residual APGA exhibits a strong correlation with Ao, espe-
cially for earthquakes with M, > 2.5. Estimated values of
Ao and APGA are slightly higher for mainshocks than for
aftershocks in the dataset as whole and for individual earth-
quake sequences in particular. Local coherence in the spatial
patterns of As and APGA supports future research into non-
ergodic GMPEs in which the distribution of expected ground
motion depends on the location of the source region.
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Data and Resources

Waveform data, earthquake catalogs, and station meta-
data for this study were accessed through the Northern
California Earthquake Data Center (NCEDC) and are pub-
licly available from http://service.ncedc.org/ (last accessed
August 2017). We use waveform analysis software for data
in miniSEED and Seismic Analysis Code (SAC) format that
is publicly available as part of the Incorporated Research
Institutions for Seismology (IRIS) consortium (http:/ds.iris
.edu/ds/nodes/dmc/software/, last accessed July 2017). The
mapped faulting structures shown in Figure 1 were obtained
from the U.S. Geological Survey (USGS) Quaternary Fault
and Fold Database for the United States (https://earthquakes
.usgs.gov/hazards/qfaults/, last accessed June 2017). The
ground-motion data associated with this study are available
as (B Table S1, available in the electronic supplement to this
article. We use functions from the scikit-learn Python pro-
gramming package (Pedregosa et al., 2011) for our analyses
in this study, and we provide an example script of our im-
plementation of the Random Forest GMPE in () Script S1.
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