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Abstract. We relocate 297,400 events recorded by the Southern California Seismic
Network (SCSN) between 1975 and 1998 using spatially varying station terms to
improve relative location accuracy. Our method uses existing SCSN P and S picks,
a smooth one-dimensional velocity model, and an iterative grid search approach
based on the L1 norm. We apply empirical corrections for three-dimensional
structure by computing station timing corrections that continuously vary as a
function of source position. Station terms for each event are obtained by smoothing
the residuals from nearby events using a natural neighbor (Delaunay) tessellation
of the seismicity and then iterating until a stable set of locations and station terms
is achieved. Our approach achieves relative location accuracy comparable locally
to master event methods but can be applied uniformly over large regions. Median
estimated standard errors for our final locations are 328 m in horizontal position and
741 m in depth. Our locations exhibit much less scatter, particularly in depth, than
those of the SCSN catalog and a greater tendency to align into linear and planar
features suggestive of fault structures. Our results appear comparable to, and in
some cases better than, previous SCSN relocation studies using joint-hypocenter-
velocity inversion techniques. Plots of daytime versus nighttime events permit
discrimination between clusters of natural and artificial seismicity. We observe no
simple relationship between the maximum depth of seismicity and surface geology.

1. Introduction

Earthquakes are routinely located by comparing ob-
served arrival times of P and S phases with those pre-
dicted by a reference velocity model and by identifying
the best fitting event locations and origin times. Inac-
curacies in the assumed velocity model will introduce
systematic errors into the locations; these errors are
typically more significant than the mostly random er-
rors caused by phase-timing uncertainties. For example,
lateral velocity variations related to three-dimensional
Earth structure will bias event locations derived us-
ing a one-dimensional velocity model. These errors
can be divided into two different categories: (1) ab-
solute location errors in individual events and (2) rel-
ative location errors among nearby events. Addressing
the problem of absolute location errors requires solving
for an improved velocity model; this is the approach
used in joint-hypocenter-velocity (JHV) inversions [e.g.,
Spencer and Gubbins, 1980; Pavlis and Booker, 1980;
Hawley et al., 1981; Thurber, 1983; Michael, 1988; Eber-
hart Phillips, 1990; Eberhart Phillips and Michael, 1993;
Magistrale and Sanders, 1996).
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Improvements in relative locations among events,
however, can be achieved without solving for a new ve-
locity model. This has been accomplished using a vari-
ety of techniques, including joint epicenter determina-
tion, station term, and master event methods le.g. Dou-
glas, 1967; Evernden, 1969; Lilwall and Douglas, 1970;
Frohlich, 1979; Jordan and Sverdrup, 1981; Smith, 1982;
Pawvlis and Booker, 1983; Viret et al., 1984; Pujol, 1988].
These methods are most effective when applied to a rel-
atively compact cluster of events, so that the travel time
perturbation to each station is approximately constant
among the different events. Of these approaches, per-
haps the simplest and most widely applied is to solve
iteratively for a custom set of station-timing corrections
(commonly called “station terms”); this is the method
described by Frohlich [1979].

For localized clusters of events these techniques of-
ten lead to a dramatic improvement in relative location
accuracy (although the absolute location of the entire
cluster remains poorly constrained). As the events be-
come more distributed, however, these methods become
less effective because a single set of station terms can no
longer adequately describe the full effect of the three-
dimensional velocity variations. For optimal results a
different set of station terms is required for each source
region. Researchers studying ways to improve earth-
quake locations have given these terms various names,
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such as “source-specific site corrections” (SSSC), and
“correction surfaces.” If calibration events of known
location are available, then improvements in absolute
location accuracy can be achieved by suitable spatial in-
terpolation of these terms [e.g., Cogbill and Steck, 1997;
Schultz et al., 1998].

Here we describe a new method for simultaneously
locating large numbers of earthquakes that, on a local
scale, achieves relative location accuracy comparable to
master event techniques but which can be uniformly ap-
plied over a large area. Essentially, our approach is to
compute station terms for each event by smoothing the
residuals from nearby events using a natural neighbor
(Delaunay) tessellation of the seismicity and then to it-
erate until a stable set of locations and station terms is
achieved. Location errors are estimated using a boot-
strap approach that randomly reassigns the final travel
time residuals to different stations.

We apply our method to relocate nearly 300,000
earthquakes recorded by the Southern California Seis-
mic Network (SCSN). Compared to the SCSN cata-
log, scatter in the event locations is substantially re-
duced, particularly in depth, and the earthquakes show
a greater tendency to group into tight clusters and to
align into linear and planar features.

2. Location Estimation

Any earthquake location method requires a measure
of data misfit and a technique for identifying the mini-
mum point in the misfit function.

2.1. Misfit Measures

The maximum likelihood estimates of source loca-
tions will be found by minimizing the appropriate norm
(misfit function or measure) of the residuals, r;; (t;, F;) =
Ti"jbs —t; — 7;(Z;) (where t; and 7; are the origin time
and location of the ith event respectively, Tijbs is the ob-
served arrival time at the jth station from the ith event,
and 7;(Z) gives the travel time to the jth station from a
source at ) with respect to the origin times and source
locations (see Appendix A for discussion). Thus one
must know seismic velocity as a function of position (to
calculate the 7;(Z)) and the distribution of the picking
errors (which determines the misfit function). We will
defer discussion of the velocity model to section 2.3, and
we now discuss the choice of misfit function. It is com-
mon practice, at least for routine processing, to use the
L2 norm, that is, to minimize the weighted sum of the
squares of the residuals. As discussed in Appendix A,
this least squares misfit function is appropriate for inde-
pendent zero-mean normally distributed errors. How-
ever, distributions of travel time residuals are rarely
Gaussian, usually having much longer tails than Gaus-
sian distributions [e.g., Jeffreys, 1932; Buland, 1984;
Freedman, 1966; Pulliam et al., 1993; Billings et al.,
1994]. While least squares gives the maximum likeli-
hood estimate (and therefore is asymptotically fully ef-
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ficient in the statistical sense of having the minimum
variance [Kendall and Stuart, 1967]) for errors which
are normally distributed, it is not robust with respect
to deviations from the normal distribution. Even if only
a small fraction of the errors are drawn from a distribu-
tion with longer than Gaussian tails (or from another
Gaussian distribution broader than the main one), least
squares estimates are less efficient than other more ro-
bust estimates [e.g. Huber, 1981].

For this reason, we use the L1 norm for our relo-
cation algorithm; that is, we minimize the sum of the
absolute values of the residuals. This approach yields
the maximum likelihood estimators if the distribution
of errors is double-sided exponential, pays only a small
efficiency penalty if the distribution is actually Gaus-
sian, and, most relevantly, is more efficient than the L2
norm for distributions with tails heavier than Gaussian
[Huber, 1981]. The L1 norm is simpler to implement
than many other robust misfit measures (e.g., bisquare,
Huber, sine, Jeffreys [see Anderson, 1982]) because it
requires no tuning of parameters and, like least squares,
is well-suited for efficient computation of origin times
and station corrections.

2.2. Minimization Techniques

There are a variety of methods to identify the mini-
mum in the event location misfit function. The tradi-
tional way, apparently dating back to at least Geiger
[1910], is to use least squares and to expand the residu-
als in a first-order Taylor series about some initial guess
for t; and #;. The resulting linear least squares prob-
lem is then solved via the normal equations (or mod-
ifications thereof; [see Thurber, 1986, and references
therein]) to yield an improved location estimate, and
the method then iterates to convergence. Other misfit
criteria can be handled using a similar approach by iter-
atively reweighting the residuals to simulate the desired
misfit measure [Anderson, 1982]. All of these methods
require calculation of partial derivatives of 7;. In ad-
dition, the normal equations can suffer from stability
problems, depending on the condition number of the
matrix of partial derivatives (though the modifications
mentioned above alleviate this problem to some extent).
More recently, various nonlinear minimization schemes,
which do not require derivative information and do not
suffer the same stability problems, have been applied to
the earthquake location problem, including grid search
methods [Sambridge and Kennett, 1986; Nelson and
Vidale, 1990], genetic algorithms [Sambridge and Gal-
lagher, 1993], simulated annealing [Billings et al., 1994],
and evolutionary programming [Minster et al., 1995].
We use a grid search approach similar to that of Sam-
bridge and Kennett [1986] and Shearer [1997], which we
will describe in more detail in section 5.

2.3. Velocity Model Errors

In addition to the random errors €;; resulting from
picking arrival times from (noisy) seismograms, there
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are also systematic errors caused by the difference be-
tween the actual seismic velocity structure and the one
used to calculate the predicted travel times. These er-
rors will bias the estimated locations away from the
true locations. For events recorded and picked using
exactly the same set of stations (i.e., identical numbers
of P and S picks from identical stations) this bias will
vary as a function of source location but will be simi-
lar for “nearby” events (where the definition of nearby
will depend mostly on the scale length of the unmod-
eled structure) so that the relative locations of nearby
events will be preserved. Unfortunately, for the SCSN
catalog at least, even nearby events are recorded by
widely varying subsets of the entire network. For ex-
ample, of the 16,187 events in our catalog in a square
box 50 km on a side surrounding the 1994 Northridge
mainshock, 16,117 were recorded by unique subsets of
the SCSN network; that is, they have a unique set of P
and S picks matched by no other event. Of the remain-
ing events, there were 29 pairs of events recorded by
the same subnetwork, no triplets and three quadruplets.
This interaction of the variation of effective network
geometry with velocity model errors leads to psuedo-
random scatter in the estimated locations [e.g., Pavlis
and Hokanson, 1985]. Depending on accuracy of the ve-
locity model used to calculate the travel times 7;, this
psuedo-random scatter may dominate the truly random
scatter from the random reading errors €;;. Some of
these biasing effects could be reduced by using a subset
of the data with a more consistent network geometry
but at the cost of discarding part of the available data.
A more efficient approach is to use station terms to ad-
just for differences in the travel times to the different
stations.

3. Static Station Terms

A first step toward accommodating (and therefore re-
moving the bias caused by) unmodeled structure is the
use of station corrections or station terms. When loca-
tions are estimated as above for a number of events, it
is often found that the distributions of residuals at indi-
vidual stations have nonzero means and are much more
compact than the distribution of all residuals taken to-
gether. This indicates that a significant part of the
modeling error at each individual station is common
for all events. This part of the modeling error can be
accounted for by the use of a single number at each sta-
tion (actually a single number for each phase) which is
added to the 7;(Z) calculated from the velocity model.
Thus we obtain a new version of equation (A1):

(1)

where s; is the station correction or station term for
the jth station. We will refer to these as static station
terms to differentiate them from the source-specific sta-
tion terms discussed in section 4. Notice that now the
(L1) misfit function to be minimized is a function of the

Tiojbs =t + Tj(ﬁ) + 85 + €5,
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s; in addition to the t; and the @;:
Co(ti, @5y 85) = D wis [T5 —ts — m5() — s3] . (2)
%,

We note here that because analyst estimates of picking
error are only available for about half of the data in the
SCSN catalcg, for this data set we actually set all of
the weights w;; to 1.0; see Appendix A for more dis-
cussion. Taking derivatives of Cs with respect to t;, 27,
and s; will give 4nq +n, equations for the 4n, unknown
hypocentral parameters and the ns unknown station
corrections. This system (unlike the set of equations
without station corrections; see Appendix A) does not
decouple: the derivatives with respect to the hypocen-
tral parameters of any event will involve the station cor-
rections for any stations that recorded that event, and
the derivatives with respect to a station correction will
involve the hypocentral parameters of any event that
was recorded by that station.

We perform the minimization of Cs with a two-step
iterative procedure based on that of Frohlich [1979]. In
the first step the station corrections s; are held fixed
and C is minimized with respect to the hypocentral
parameters. In this step we simply absorb the station
corrections into the arrival times to form “corrected” ar-
rival times, 7;9** = T2P* — s; and locate each event as
before but with these corrected arrival times instead of
the actual arrival times. In the second step the hypocen-
tral parameters are held fixed and C; is minimized with
respect to the station corrections. In this step, from
equation (2), each s; is just given by the weighted me-
dian (see Appendix B) of the residuals at that station,
TP — t; — 73(<3). In the case of the L2 norm a sim-
ilar method can be applied, using the weighted mean
instead of the median. We repeat these two steps until
they converge to a stable set of station corrections and
hypocentral parameters. There is one very fundamen-
tal nonuniqueness in equation (2); if we add some 4§t to
all the origin times t; and subtract the same 6t from
all the station terms s;, the value of the misfit func-
tion is unchanged. We resolve this in the usual way of
constraining the mean of the station terms to be zero.

4. Source-Specific Station Terms

Station corrections as described in section 3 work
well only when the differences between the actual travel
times in the Earth and those in the assumed velocity
model to each station are the same for all events. The
two most relevant situations where this would occur are
when (1) errors in the assumed velocity model are con-
fined to very shallow depths and (2) the events are con-
fined to a region small compared to the event-station
separations and dominant scale length of the errors in
the assumed velocity model. In the latter case the use of
station terms is similar to using master event relocation
methods, where the relative locations of the events with
respect to each other are much better determined than



10,942

the absolute location of the cluster as a whole [e.g., Jor-
dan and Sverdrup, 1981]. When the seismicity covers a
large region containing significant lateral velocity het-
erogeneity, neither of the above two conditions is likely
to apply. One approach to dealing with this problem
is to jointly invert for event locations and perturba-
tions to the assumed velocity model [e.g., Spencer and
Gubbins, 1980; Pavlis and Booker, 1980; Hawley et al.,
1981; Thurber, 1983; Michael, 1988; Eberhart Phillips,
1990]. However, it is possible to improve the relative lo-
cations of nearby events (even in the presence of three-
dimensional velocity heterogeneity) without inverting
for a velocity model by generalizing the station term
concept. In this case, the station corrections no longer
consist of a single term at each station; rather, each sta-
tion will have a station correction function which will
vary as a function of source position.

This concept is related to observations of azimuthally
varying station terms [e.g., Cleary and Hales, 1966;
Herrin and Taggart, 1968; Lilwall and Douglas, 1970;
Dziewonski and Anderson, 1983]. More recently, this
idea has been extended to include takeoff angle as well
as azimuth [e.g., Zhou and Wang, 1994; Robertson and
Woodhouse, 1997]. For purposes of earthquake location,
however, perhaps a more straightforward approach is
to parameterize the station terms directly in terms of
event location, as first suggested by Pavlis and Hokan-
son [1985]. A simple way to implement this (used, for
example, by Seeber and Armbruster [1995]) is to de-
fine a set of boxes and to calculate a separate set of
static station corrections for each box. Disadvantages to
this approach include uneven event density and the dis-
continuous changes in the station correction functions
at the boundaries of the boxes. Other more elaborate
methods of defining these station correction functions
are given by Cogbill and Steck [1997] and Schultz et al.
[1998]. In general, these studies have considered only
two-dimensional variations in the station corrections,
although in principle, they could be generalized to in-
clude variations with event depth.

We use a different approach which is essentially a gen-
eralization of that of Frohlich [1979] for estimating a set
of static station corrections. It remains a two-step iter-
ative process, but now the station correction estimation
step is more elaborate. For static station terms we sim-
ply calculate the station term for each station as the
weighted median of the residuals at that station from
all events. For source-specific station terms (SSSTs), we
calculate a separate correction for each source-receiver
pair as the weighted median of the residuals at the given
station from N nearby events. If N is equal to the to-
tal number of events, we recover the static station term
case. If we set N equal to 1, then we have the meaning-
less case of every SSST being completely independent
of the others, and we will obtain a misfit of zero with
the events remaining at any arbitrary initial set of event
locations. For intermediate values of N we will obtain
station correction functions which vary smoothly as a
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Figure 1. An example of a 2-D Delaunay tessellation
of a set of 31 points. If the point denoted by a circle is
the event under consideration, then the squares mark
its first-order natural neighbors and the triangles mark
its second-order natural neighbors.

function of source location (in both position and depth),
with the degree of smoothing determined by the choice
of N. The SSSTs so computed will adapt naturally to
event density, averaging over larger volumes where seis-
micity is sparse and over smaller volumes in regions of
dense seismicity.

A key feature of our method is the way in which we
determine the N adjacent events to each target event.
We select nearby events using the concept of Delau-
nay tessellation and natural neighbors, methods widely
used in computational geometry, but only recently in-
troduced to geophysics [e.g., Parker et al., 1987; Hilde-
brand and Parker, 1987; Constable et al., 1993; Sam-
bridge et al., 1995; Braun and Sambridge, 1995]. For
a given set of points in three dimensions the Delau-
nay tessellation specifies connections between a given
set of irregularly distributed points, or nodes, that de-
fine tetrahedra that are as “well-shaped” as possible.
The “natural neighbors” of each point are those points
that are directly connected by the Delaunay tessella-
tion; they are the closest surrounding points and are
uniquely defined by the nodal distribution. Here we
generalize this concept, defining a pair of points to be
ith-order natural neighbors if 4 is the minimum num-
ber of edges of the Delaunay tessellation which must be
traversed to travel from one point to the other.

The number of ith order natural neighbors is not fixed
but will vary from node to node depending upon the ge-
ometry of the tessellation. To choose the IV nearest nat-
ural neighbors of an event, we construct (using the code
of Barber et al. [1996]) the 3-D Delaunay tessellation of
the current locations and select the NV lowest-order nat-
ural neighboring events, taking a random sample of the
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last order if necessary to get exactly NV events. In the
(two-dimensional) example shown in Figure 1, the cir-
cle is the target event, the squares are its first-order
natural neighbors, and the triangles its second-order
natural neighbors. For the 15 nearest natural neigh-
bors we would use all six first-order and a randomly
selected nine of the 13 second-order natural neighbors.
Depending upon the density of the events surrounding
the target event, the nearest neighbors can span a wide
range of distances. The Delaunay tessellation ensures
that the computed SSSTs vary smoothly and continu-
ously throughout the event distribution.

5. Data and Processing

Southern California provides a good test of our relo-
cation algorithm. Over 300,000 local events have been
recorded since 1975 and are widely distributed across
the region. The area has been well-studied, and phase
data from a large network are readily available.

5.1. Data

Our data are the arrival times of P and S waves from
297,400 local events from 1975, 1976, and 1981-1998
recorded at the more than 200 stations of the Southern
California Seismic Network (SCSN) [e.g., Wald et al.,
1995], a joint project of the Seismological Laboratory,
California Institute of Technology, and the U.S. Geolog-
ical Survey, Pasadena. Figure 2a shows the locations
of the SCSN stations. These arrival times are manu-
ally picked by SCSN analysts and are available from
the Southern California Earthquake Center Data Cen-
ter (SCECDC) (http://www.scecdc.scec.org). The ar-
rivals are used by the SCSN to locate the events (using
an iterative least squares approach), producing an event
catalog (hereinafter referred to as the SCSN catalog).
We use these results as starting locations for our reloca-
tion scheme. To avoid P, /P, and S,/S, ambiguity, we
use only arrivals with source-receiver ranges of 120 km
or less. We relocate only those events with at least five
such picks. Our final data set contains 4,147,998 P and
846,350 S arrivals.

5.2. Grid Search Algorithm

To identify the best fitting location for each event,
we use the grid search algorithm described by Shearer
[1997], which is similar to that of Sambridge and Ken-
nett [1986]. For each event we calculate the misfit at
each point in a precomputed grid (see section 5.3) in a
region which covers the entire depth extent of the grid
and is 20 km x 20 km laterally, centered on the SCSN
catalog epicenter. Note that a grid search for the ori-
gin time is unnecessary; for the Ll norm and equation
(2) and a given 7, the t; which minimizes C; is simply
given by the weighted median (see Appendix B) of the
T;?b% — 7;(7;), where the T;?®* are the corrected arrival

T,
times. In the case of the L2 norm a similar argument
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Figure 2. (a) Locations of SCSN stations within our
study area. Heavy lines are state boundaries and coast-

lines; light lines are faults. (b) Locations of the 5226

sources used to calculate our static station terms.

applies and the best fitting origin time is obtained from
the weighted mean.

Following identification of the best fitting grid point,
we refine the search by finding the misfit for each point
in a series of successively finer 3 x 3 x 3 grids centered
on the best fitting point from the previous grid search.
The spacing in the final grid is ~15 m; this is the nomi-
nal resolution of our method. The travel times from the
points in these finer grids are obtained by interpolation
from the surrounding points in the precomputed grid. If
the best fitting point is at the edge of the initial search
grid, indicating that the minimum may lie outside the
initial search grid, the search is restarted with a new,
shifted, initial search grid.

5.3. Precomputation of Travel Times

For a reference 1-D velocity model we use a smoothed
version [Shearer, 1997] of the standard southern Cali-
fornia velocity model [Wald et al., 1995; Hadley and
Kanamori, 1977]. We assume a scaled version of the P
velocity model for the S velocity model, using a Pois-
son’s ration of 0.25. From these models we compute P
and S travel time tables at 2-km intervals of range and
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source depth. To speed the evaluation of travel times
from trial locations to the SCSN stations, we then pre-
compute and store the travel times from a grid covering
southern California to each of the SCSN stations by
interpolating from these travel time tables. The grid
covers latitudes from 32.5°N to 36.7°N, longitudes from
121.4°W to 115°W, and depths from 0 to 26 km, with
a spacing of ~2 km. The spacing between grid points
must be small enough to insure adequate sampling of
the travel time curves. We interpolate travel times be-
tween these grid points using trilinear (in early iter-
ations) and tricubic (in later iterations) interpolation.
The trilinear interpolation is much faster to compute
but results in slight second-order discontinuities (i.e.,
changes in slope) in the travel times at the grid points.
In some cases this can produce artifacts in the loca-
tions with some events tending to “stick” near the grid
points. These artifacts are eliminated through use of
the tricubic interpolation, which yields smooth varia-
tions in travel time with position.

5.4. Test of Grid Search Algorithm

To test how well our grid search algorithm works,
including the effects of its various interpolations, we
perform a simple synthetic test. For each event in the
SCSN catalog we generate synthetic arrival times for
each station which recorded that event by ray tracing
from the catalog location through our 1-D reference ve-
locity model. These times are generated by solving the
two-point ray tracing problem exactly; we avoid using
travel time tables at this stage. We then apply our al-
gorithm to locate the events using the synthetic arrival
times. Since there is no added noise, each event should
be located at its catalog location (to within the res-
olution of our finest grid). Any differences are errors
introduced by inaccuracies in the various interpolations
and/or the failure of our grid search algorithm to find
the minimum in the misfit function. For the 297,400
catalog events, the median difference between the initial
and recovered locations is 9.7 m in horizontal position
and 42.7 m in depth. These differences are much less
than the typical standard errors in the event locations
derived from the actual data (see section 5.7), implying
that the small errors introduced by the travel time in-
terpolations do not limit the accuracy of our locations.

5.5. Static Station Terms

To account for shallow velocity differences below each
station, we first estimate static station terms using a
set of 5226 well-recorded events distributed as evenly
as possible across southern California (see Figure 2b).
We select these events by dividing our study volume
into boxes with dimensions approximately 7 km x 7 km
x 4 km. From each box we choose the event with the
largest number of picks from those which have an SCSN
catalog location quality of “A” or “B” and which have
at least one S pick within 25 km of the epicenter. We do
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P static station terms
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Figure 3. (a) Our P static station terms plotted at the
station locations, with circles denoting negative (early)
station terms and crosses indicating positive (late) sta-
tion terms. Note the large positive station corrections
in the major sedimentary basins (Ventura, Los Angeles,
and Salton Trough) and generally negative station cor-
rections elsewhere. (b) Same as Figure 3a, except for S
station terms.

not use the complete catalog at this stage to avoid the
biasing influence of large numbers of events in certain
areas (e.g., Landers, Northridge). Figure 3 shows our
computed P and S static station terms as a function of
station location. The P static station corrections vary
from about —0.6 to 0.6 s and the S vary from —0.8
to 1.5 s. The most obvious features in these maps are
the large positive station corrections associated with the
slow near-surface velocities in the sedimentary basins,
including Ventura, Los Angeles, and the Salton Trough.
The P and S station corrections are highly correlated
with the S terms ~2.3 times larger than the P terms.

5.6. Source-Specific Station Terms

Our basic algorithm is quite simple and can be de-
scribed by the following steps:
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1. Locate all events using the previously determined
static station terms.

2. Construct the 3-D Delaunay tessellation of the
current locations.

3. For each source-receiver pair (for which a pick ex-
ists) calculate a source specific station term (SSST) as
the median of the residuals from the N nearest natu-
ral neighbor events which have picks at the station in
question.

4. Relocate the events using these SSSTs.

5. Iterate steps 2, 3, and 4 until some measure of

convergence is satisfied.
Although this basic algorithm worked well in most re-
gions, we identified artifacts in our computed locations
in some areas where the one-dimensional velocity model
was particularly inappropriate. One example occurred
in the Salton Trough for seismicity along the Imperial
Fault. Some clusters of events, which in fact all occurred
at roughly the same depth, would separate upon initial
location into two clusters at different depths, one cluster
containing those events for which an S arrival had been
recorded at a nearby station and the other cluster con-
taining those events without a nearby S pick. In some
cases these clusters were separated enough that the sub-
sequent iterations would not reconcile the depths, and
the clusters would remain separate.

This problem could have been avoided by locating
events only in those regions where the velocity model
was reasonably accurate or by restricting analysis to
only those events with nearby S picks. However, our
goal was to develop a method that could be applied to
relocate the complete SCSN catalog, so we modified our
basic algorithm to avoid these artifacts by first locat-
ing those events which have at least one S pick within
25 km of the epicenter and then adding in the other
events in subsequent steps. The full algorithm is given
in Appendix C.

The convergence of the algorithm may be evaluated
(Figure 4) in terms of both the scaled median absolute
deviation (SMAD, a robust measure of the spread of
a distribution which is equal to the standard deviation
for Gaussian distributions) of the residuals and the me-
dian change in location from one iteration to the next.
The non-S events (see Appendix C) were added in at
iteration §, explaining the blips at that iteration in the
otherwise monotonic curves.

The choice of N, the number of nearest neighbors over
which we average the residuals to obtain the SSSTs, is
subject to the usual trade-off between resolution and ac-
curacy. A larger N should provide better cancellation
of the random errors, at the cost of averaging a spatially
varying quantity over a larger volume. On the basis of
experiments on subsets of the catalog with several dif-
ferent values of NV, we select N = 50 as a reasonable
compromise. This leads to averaging volumes with di-
mensions as small as a few hundred meters in areas of
dense seismicity and as large as a few hundred kilome-
ters horizontally and the full depth extent of the model
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Figure 4. (a) The SMAD of the residuals (P and S
together) at each iteration. (b) Median of the difference
in the locations of the events at each iteration relative
to each event’s location at the previous iteration. The
first five iterations used only events with nearby S picks,
while subsequent iterations included all events, explain-
ing the blips at iteration 6 in the otherwise monotoni-
cally decreasing curves. :

vertically in areas of sparse seismicity. Typically, the
averaging volumes have dimensions of a few kilometers.
Because we treat the P and S SSSTs completely sepa-
rately, the averaging volume for S is generally somewhat
larger than that for P, owing to the smaller number of
S picks.

We show an example of our SSST's for one particular
station in Figure 5. In Figure 5a we plot the P resid-
uals for every event recorded at station RYS at each
event’s location projected to the surface. The static
station correction for RYS has already been applied, so
the median residual is zero. Note the spatial coherence
of the pattern of residuals, indicative of the presence of
3-D velocity heterogeneity. Figure 5b is a similar plot
of our P SSSTs for RYS calculated from the residuals
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Figure 5. (a) P residuals for all events recorded by
station RYS (large triangle) plotted at the event loca-
tions. The static station correction has already been
applied. Note the large-scale spatial coherence in the
residual pattern, indicating the presence of 3-D veloc-
ity heterogeneity. (b) The source-specific station terms
(SSSTs) for station RYS calculated from the residuals
in Figure 5a, again plotted at the event locations. The
number of nearest natural neighbors, N, is 50. The
SSSTs are essentially a spatially smoothed version of
the residuals.

in Figure 5a. Note that the SSSTs are essentially a spa-
tially smoothed version of the residuals. For all events
the S SSST's are positively correlated with the P SSSTs
with a correlation coefficient of 0.75, and the slope of
the line which best fits (in an L1 norm sense) a plot of
S SSSTs versus P SSSTs is 2.5.

5.7. Location Uncertainty Estimation

We estimate location errors using the random resam-
pling approach of Billings et al. [1994] as modified by
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Shearer [1997]. We assume that the distribution of the
final travel time residuals (TP* —t; — 7 (#}) — s;5, where
the s;; are the SSSTs) from a given final location is rep-
resentative of the distribution of random timing errors
for that event. We simulate the effect of these errors
on the computed location by randomly selecting resid-
uals (from the complete set of residuals for the event) to
add to each arrival time and then relocating the event
using these perturbed arrival times. By repeating this
procedure many times, we obtain a cloud of possible
locations for the event that represents the scatter due
to the uncertainties in the picks. This technique has
the advantages of fully including all of the nonlineari-
ties of the problem and the fact that some ray paths
are much more important than others in constraining
the location. The median horizontal standard error for
the entire catalog is 328 m, and the vertical is 741 m.
Note that since we hold the SSSTs fixed during this
procedure, these error estimates are a measure of the
relative location errors among nearby events produced
by random errors in the arrival times. They do not in-
clude the systematic errors in absolute event location
introduced by incorrect velocity models and/or three-
dimensional velocity heterogeneity. The improvement
in location accuracy achieved by applying the SSSTs is
primarily in the relative locations among nearby events.

Evaluating absolute location accuracy is hindered by
the fact that the true locations of the vast majority of
events are unknown. In principle, a subset of events
of known locations would provide a good test of our
location procedure. Ideally, these events would be dis-
tributed similarly to the entire catalog so that (1) the
distribution of errors of these events would be repre-
sentative of that of the complete catalog, (2) we could
test how the error varies as a function of event posi-
tion, event magnitude, number of picks, etc., and (3)
closely spaced events could be used to check relative lo-
cation error, as well as absolute location errors. In addi-
tion, these known locations could be incorporated into
the location procedure as constraints (by increasing the
weights, w;; in equation (2), associated with the phases
from these events), improving the absolute locations.
Unfortunately, the only events whose location we can
truly know are explosions. These are nonideal as they
are confined to the surface (whereas natural seismic-
ity occurs at depth) and thus their travel times include
the effects of traversing the often highly heterogeneous
near-surface region twice. In addition, their geographi-
cal distribution is also quite different from natural seis-
micity. Nonetheless, we compared the known locations
of 58 such events [Hauksson, 2000] with the locations
for the same events in the SCSN catalog and in our final
catalog. In both cases, the median horizontal misloca-
tion was ~750 m.

5.8. Residuals

Histograms of the P and S residuals for the cata-
log locations, our locations with static station terms,
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Plate 1. A map view of our final relocations. The events are colored by the date of their occur-

rence, so that temporally limited clusters appear coherent, whereas areas of ongoing seismicity
appear multicolored.
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Plate 2. (left) Map views and (right) SSE-NNW cross sections of (top) the SCSN catalog
locations, (middle) our static station term relocations, and (bottom) our source-specific station
term relocations of seismicity on and near the Garlock fault.
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Figure 6. Residual histograms. (top) SCSN catalog residuals, (middle) residuals from locations
using our static station terms, (bottom) residuals from our final locations using our SSSTs. (left)
P residual histograms and (right) S residual histograms. The SMAD of each distribution is

indicated on each plot.

and our locations with SSST's are presented in Figure 6.

' The distributions of the residuals for the latter two sets
of locations show the sharp peaks at zero typically seen
with the use of the L1 norm. On each plot we indicate
the SMAD of each distribution. For the P residuals, the
SMADs decrease from 0.177 s to 0.103 s to 0.032 s for
the three sets of locations, respectively. Similarly, the
SMADs of the S residual distributions decrease from
0.261 s to 0.093 s to 0.051 s. Squaring the SMADs to
get a robust version of variance gives a “variance” re-
duction of 66% for P and 87% for S with the addition
of the static station terms. The addition of the SSSTs
further improves the variance reduction to 97% for P
and 96% for S.

Of course, some improvement in model fit should be
expected when more free parameters are permitted in
an inversion. However, the use of static station terms
and SSSTs leads to a large improvement in the model
fit while adding only a relatively small number of addi-
tional free parameters. We are locating about 300,000
events using about 5 million arrival times. There are
four model parameters associated with each location
and one model parameter for each station associated
with the static station terms. A reasonable estimate
for the number of effective model parameters associ-

ated with the SSSTs is the number of picks divided by
N (which is 50 in our case). Thus, since the number of
events is about 300,000 and the total number of picks is
about 5 million, the total number of model parameters
used in the three sets of locations are approximately
1.2 million, 1.2 million, and 1.3 million for the catalog,
static station term, and SSST locations, respectively.

6. Relocation Results

Our final catalog consists of locations and estimated
standard errors for 297,400 events (available via anony-
mous ftp at ftp://mahi.ucsd.edu/pub/SSST). Events
may be identified by their times and their SCSN CUSP
number. We now describe some of the main features
of the locations and compare our results to those of
the SCSN catalog and some other relocation results.
These include the locations of Zhou [1994], Seeber and
Armbruster [1995], Magistrale [1993], Magistrale and
Sanders [1996], and Hauksson [2000].

6.1. Overview

We plot a map view of all our final locations in
Plate 1. Each event is colored by the date of its occur-
rence, and areas of ongoing seismicity are multicolored,
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Figure 7. Map labeling faults and geographic features mentioned in the text. Abbreviations are
El Paso Mountains (EPM), Ventura Basin (VB), Los Angeles Basin (LAB), San Jacinto Fault
Zone (SJFZ), and Rose Canyon fault zone (RCFZ).

whereas temporal clusters of seismicity, such as large
events and their aftershocks, appear as coherently col-
ored regions. Examples of the latter (with year of oc-
currence and rough location) include Northridge (1994,
34.3°N, 118.6°W), Landers (1992, 34.2°N, 116.4°W),
Oceanside (1986, 33°N, 117.8°W), Elmore Ranch/Su-
perstition Hills (1987, 33°N, 115.8°W), and Coalinga
(1983, 36.3°N, 120.2°W). Large areas of ongoing seis-
micity include the San Jacinto Fault Zone (running NW
from about 33.2°N, 116°W) and the southern Sierra
Nevada and Tehachapis (34.8° —36°N, 119.2° — 118" W)
(see Figure 7 for locations of faults and geographical
features mentioned in text). Note the large amount of
scatter in the locations of the Coalinga events. This
scatter is due to the fact that the locations of events
that are outside the SCSN network (mostly Coalinga
and offshore events) are subject to much larger errors
than those events within the network. Depths are par-
ticularly unreliable in these regions, and sometimes the
location depths cluster at both the top and the bottom
of the model.

6.2. Event Depths

In most cases, accurately resolving depth is the most
challenging part of earthquake location. This results
from the fact that recording stations are confined to the
Earth’s surface, stations are often not available imme-
diately above the events, and there is typically a strong
trade-off between event depth and origin time. Finally,

the true depth of earthquakes is very hard to deter-
mine independently, preventing any direct test of the
accuracy of computed earthquake depths. As we men-
tioned in the introduction and will discuss further be-
low, tests are possible in the case of surface explosions,
but these provide only limited constraints on the loca-
tions of deeper events in the same region.

Although it is hard to access the accuracy of an in-
dividual earthquake depth estimate, some indication of
the reliability of an earthquake location method may be
obtained by studying the overall distribution of depths
in an event catalog. In Figure 8 ‘we plot histograms of
the event depths for our final SSST locations.

Although the true distribution of event depths in
southern California is unknown, we can make some
judgments based on the following criteria: (1) Natural
seismicity should taper to zero at zero depth since earth-
quake hypocenters are rarely, if ever, at the surface,
(2) artificial events should cluster near zero depth, and
(3) over a large heterogeneous region, such as southern
California, seismicity histograms should exhibit smooth
changes with depth, without sharp peaks or changes
at specific depths. Figure 8a shows our entire cata-
log which contains a mixture of natural and artific