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[1] We compare three relative earthquake location techniques using tests on synthetic
data that simulate many of the statistical properties of real travel time data. The methods
are (1) the hypocentroidal decomposition method of Jordan and Sverdrup (1981), (2) the
source-specific station term method (SSST) of Richards-Dinger and Shearer (2000),
and (3) the modified double-difference method (DD) of Waldhauser and Ellsworth (2000).
We generate a set of synthetic earthquakes, stations, and arrival time picks in half-space
velocity models. We simulate the effect of travel time variations caused by random
picking errors, station terms, and general three-dimensional velocity structure. We
implement the algorithms with a common linearized approach and solve the systems using
a conjugate gradient method. We constrain the mean location shift to be zero for the
hypocentroidal decomposition and double-difference locations. For a single compact
cluster of events, these three methods yield very similar improvements in relative location
accuracy. For distributed seismicity, the DD and SSST algorithms both provide improved
relative locations of comparable accuracy. We also present a new location technique,
termed the shrinking box SSST method, which provides some improvement in absolute
location accuracy compared to the SSST method. In our implementation of these
algorithms, the SSST method runs significantly faster than the DD method.
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1. Introduction

[2] The classic problem of locating earthquakes using
arrival time data has recently been revitalized by methods
that can greatly improve the relative location accuracy
among nearby events, even when the arrival times are
biased by the effects of three-dimensional velocity structure.
These new methods include the double-difference algorithm
[Waldhauser and Ellsworth, 2000, 2002] and source-
specific station terms [Richards-Dinger and Shearer,
2000]. Both of these techniques represent generalizations
to distributed seismicity of methods that have previously
been applied to isolated clusters of events, such as joint
epicenter determination, station terms, and master event
locations [e.g., Douglas, 1967; Evernden, 1969; Lilwall
and Douglas, 1970; Frohlich, 1979; Jordan and Sverdrup,
1981; Smith, 1982; Pavlis and Booker, 1983; Viret et al.,
1984; Pujol, 1988]. All of these methods attempt to correct
for the systematic biases in arrival times caused by three-
dimensional velocity variations without actually solving for
the velocity structure itself. They are effective in reducing
the relative errors among nearby events (for which the
arrival time perturbations are correlated) but typically do
not significantly improve absolute location accuracy (which

requires knowledge of the true three-dimensional velocity
structure).
[3] Improvements in relative location accuracy obtained

using these methods often produce a dramatic sharpening of
seismicity patterns, particularly when more accurate timing
is obtained using waveform cross correlation [e.g., Rubin
et al., 1999; Waldhauser et al., 1999; Waldhauser and
Ellsworth, 2000; Shearer, 2002]. Evaluating the perfor-
mance of these methods is complicated, however, by the
fact that the true earthquake locations are unknown. Here
we generate synthetic data sets to compare four different
relative earthquake location techniques: (1) the hypocen-
troidal decomposition method of Jordan and Sverdrup
[1981], (2) the station term method [e.g., Frohlich, 1979],
(3) the source-specific station term method (SSST) of
Richards-Dinger and Shearer [2000], and (4) the modified
double-difference method (DD) of Waldhauser and
Ellsworth [2000]. We also introduce a variation on the
SSST method, which we term ‘‘shrinking box’’ SSST, that
has some advantages over the conventional SSST method.
[4] Our comparisons in this study are restricted to arrival

time data alone, i.e., we do not consider waveform cross-
correlation constraints. Our numerical experiments show
that all of the methods give very close to the same result for
the relative locations among nearby events, as should be
expected from the theory underlying the methods. However,
there are significant differences in the computational effi-
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ciency of the methods for large data sets and the shrinking
box method appears to have a slight advantage over the
simple SSST method in terms of absolute location accuracy.

2. Linearized Earthquake Location

[5] Although the general earthquake location problem is
nonlinear, the mathematics become much easier when we

assume that perturbations to the locations are sufficiently
small that a linear approximation is valid. In practical
earthquake location algorithms this is typically achieved
with an iterative approach, in which the location is assumed
to be valid if the change in the location is very small at the
final iteration.
[6] In this section, we review some earthquake location

techniques following the notation by Wolfe [2002]. We
begin with an introduction to the multiple-event location
problem. Multiple-event location procedures are founded on
the observation that the bias contaminating travel times
from a set of nearby earthquakes tends to be strongly
correlated; in particular, the error introduced by incorrect
assumptions regarding Earth structure has a nearly constant
value for arrival times measured at the same station (see
Figure 1a). Since path bias of this type dominates the
sample standard deviations computed for single-event loca-
tions [e.g., Freedman, 1967], the relative locations of events
within a seismic cluster can be improved by taking these
correlations into account.
[7] Suppose we have a set of p = 1,2, .., P earthquakes,

with each earthquake constrained by Np arrival time obser-
vations. For simplicity we describe the situation in which P
wave phases alone are used and the data are weighted
equally, but the methods can be generalized to cases where
S or other phases are also included and the arrival times are
assigned different weights. Given an initial location estimate
xp0 for an earthquake p, a linearized estimate for how the
arrival time residuals respond to small changes in the
location may be written

Ap #xp þ sp ¼ #tp ð1Þ

where #tp is a Np component vector containing the arrival
time residuals, Ap defines the matrix of size Np � 4
containing the partial derivatives, calculated at the initial
estimate xp0,#xp are the changes in earthquake hypocentral
parameters (4 � 1) which we wish to determine (typically
these are dx, dy, dz, dt), and sp is a Np component vector of
the path anomalies due to velocity heterogeneity along each
of the source-receiver ray paths. The new locations will be
updated as xp = xp0 + #xp. When equation (1) is applied to
locate a single earthquake, sp is either set to zero or to
predetermined values. We will term this approach ‘‘single-
event location,’’ meaning that no information is used from
any other events.
[8] In most cases we compute the partial derivatives with

respect to a one-dimensional reference seismic velocity
model, although this is not required by the method. The
path correction terms sp then represent the biasing effects of
the unmodeled three-dimensional structure or other errors in
the velocity model.
[9] Considering all P earthquakes as one linearized sys-

tem, we may combine the individual single event location
equations (1) into

A#Xþ S ¼ #T ð2Þ

in which the locations are updated as X = X0 + #X. In this
case, we define MT as the total number of unknown location
parameters (4P) and NT as the total number of arrival time
observations. #X is an MT � 1 vector in which the

Figure 1. Cartoons illustrating how travel times and
station terms are affected by three-dimensional velocity
structure and different source-receiver geometries. (a) A
compact cluster of events. The ray paths to each station pass
through approximately the same velocity structure. In this
case, a single travel time correction term at each station
(static station terms) can account for the biasing effects of
the three-dimensional structure. (b) Distributed seismicity.
Static station terms cannot fully account for general 3-D
structure. They may, however, provide an estimate of the
biasing effect of the shallow velocity anomalies below each
of the stations. This can lead to some improvement in the
locations, particularly when the 3-D variations at depth are
small compared to the near-surface variations. (c) Dis-
tributed seismicity in general 3-D structure. The travel time
corrections to each station vary as a function of source
position but are highly correlated among nearby events.
Methods such as source-specific station terms (SSST) and
double-difference (DD) can be used to improve locations in
this case.
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individual#xp vectors are strung end to end, and S and#T
are NT � 1 vectors with sp and #tp strung end to end,
respectively. A is an NT � MT matrix, containing the
individual partial derivative Ap matrices along its diagonal,
i.e.,

A1 0 : 0

0 A2 : 0

: : :

: : :

0 : : AP

2
6666666666664

3
7777777777775

#x1

#x2

:

#xP

2
666666664

3
777777775
þ

s1

s2

:

:

sP

2
6666666666664

3
7777777777775

¼

#t1

#t2

:

:

#tP

2
6666666666664

3
7777777777775

As written, this equation permits the trivial solution #X = 0
and S = #T, in which the individual path anomaly
correction terms are set to the travel time residuals for each
source-receiver ray path. Meaningful solutions are only
possible if we apply constraints to the correction terms to
reduce the number of free parameters. These constraints
typically assume that the correction terms are correlated for
nearby ray paths. The simplest form of these constraints is
to assume that the earthquakes are in a compact enough
cluster that the path anomaly to each seismic station is
constant.
[10] In this case if KT is the number of stations providing

observations for the set of events, then the full correction
terms vector S can be expressed as

S ¼ Bs ð3Þ

where s is a KT � 1 vector that contains the terms at each
station and B is the NT � KT matrix that assigns one of these
KT terms to each of the NT travel time residuals:

Bij ¼
1 when #Ti is from station j

0 otherwise

8<
: ð4Þ

and (2) becomes

A#Xþ Bs ¼ #T ð5Þ

[11] We will term the s values the ‘‘static’’ station terms to
indicate that they have fixed values for each station regard-
less of the event location. In contrast, the ‘‘source-specific’’
station terms (SSST) that we will later consider have
different values for different source locations. It is important
to note at this point that (5) does not have a unique least
squares solution for #X and s because their projections
onto the data space are not linearly independent. The most
obvious nonuniqueness is the tradeoff between the event
origin time part of #X and the station terms; any constant
time could be added to one and subtracted from the other.
This ambiguity can be removed fairly easily by imposing
additional constraints on s, for example, by forcing the
mean station term to zero.
[12] However, there are also tradeoffs between the x, y, z

locations of the events and the values of s. For example,

north-south shifts in the absolute event locations can be
accommodated by adding times to station terms to the north
of the event cluster and subtracting times from the station
terms to the south. This tradeoff between the station terms
and the locations is complete if the partial derivatives are
identical for all of the events (i.e., the same reference
location xp0 is used) [Jordan and Sverdrup, 1981; Pavlis
and Hokanson, 1985]. In this case the absolute location of
the event cluster is unconstrained, provided no additional
constraints are imposed on s. When the partial derivative
matrices differ among the events, in principle this tradeoff is
broken and absolute location information can be obtained.
However, in practice the system remains very ill condi-
tioned and absolute locations are not significantly con-
strained until the event separation becomes quite large (at
which point the static station term approximation is prob-
ably no longer valid because the path anomalies to each
station will vary between events).
[13] The improvement in location accuracy obtained by

using (5) is found in the relative locations among the events
in the cluster. One might ask why this is achieved given that
the path anomalies are the same for all of the events and
could be expected to have a similar biasing effect on all of
the event locations. The improvement occurs largely be-
cause of the fact that arrival times for the events are not
always recorded by the same set of stations and thus are
biased by the path anomalies by differing amounts. In
addition, least squares solutions will tend to weight the
largest residuals the most and thus the solutions may be
dominated by the small set of stations with the largest
station terms.
[14] In the following sections, we will show how different

techniques improve relative locations.

2.1. Hypocentroidal Decomposition (JS)

[15] This method was introduced by Jordan and Sverdrup
[1981] (hereinafter referred to as JS) and involves projecting
out the part of the problem that is sensitive to the static
station terms. In this case we define the NT � NT projection
operator QJS:

QJS � INT � BBy ð6Þ

where By is the generalized inverse of B calculated by
singular value decomposition (SVD).
[16] Define wk to be the number of earthquakes recorded

by station k and wk(i) to be the number of earthquakes
recorded by the station recording [#T]i. Then

QJS½ 
ij¼ dij �
1

wk ið Þ
#ij ð7Þ

where dij is the Kronecker delta function and #ij = 1 if
[#T]i and [#T]j are from same station, and zero otherwise.
[17] QJS transforms #T into #T minus the travel time

residual averages at each station. In the static station term
case, all of the terms are equal to these averages, and thus
QJSB = 0 and (5) becomes

QJSA#X ¼ QJS#T ð8Þ
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The least squares solution to this equation can be obtained
as

#X ¼ QJSAð ÞyQJS#T ð9Þ

[18] Thus the new locations can be obtained without
solving explicitly for the station terms. Note that stations
that only record one earthquake will not contribute to this
solution because the average residual in this case will
always equal the residual itself; these stations can simply
be deleted from the system prior to any calculation.
[19] Further insight into this method may be obtained by

decomposing the set of location perturbations {#xp; p =
1,2, � � �, P} into two parts:

#xp ¼ #x0 þ Dxp ð10Þ

where

#x0 � P�1
XP
p¼1

#xp ð11Þ

and

XP
p¼1

Dxp ¼ 0 ð12Þ

x0 + #x0 is called the hypocentroid, the average absolute
location of the earthquakes, and the {Dxp} are called the
cluster vectors, which only define the relative locations of
the earthquakes, of the event group. Consequently,

#X ¼ #X0 þ DX ð13Þ

[20] The method of Jordan and Sverdrup [1981] was
developed to study groups of shallow teleseismic earth-
quakes over limited regions. In this situation, the partial
derivatives do not vary much with earthquake location, so in
the Jordan and Sverdrup method, the partial derivatives in A
for all earthquakes are set to an identical reference point. In
this special case, it can be proved that QJS A#X0 = 0
[Wolfe, 2002], so that only improved relative locations can
be obtained. In practice, events within a cluster are
located first using single event location. The mean
cluster location is then fixed as the reference location
(the hypocentroid) for the cluster and the method solves
for the perturbations to this location. For clusters with
large numbers of events, considerable computation will
be involved in the singular value decomposition of the
NT � MT matrix QJSA #X. In these cases, we have
found that iterative matrix inversion techniques such as
the conjugate gradient method are effective in speeding
the calculations.

2.2. Static Station Terms (ST)

[21] One of the simplest and most widely applied relative
location approaches is the station term method, which
solves iteratively for a custom set of station-timing correc-

tions [e.g., Frohlich, 1979; see also Pujol, 1988]. Equation
(5), A#X + Bs = #T, can be written

A1 0 : 0

0 A2 : 0

: : :

: : :

0 : : AP

2
66666666666666664

3
77777777777777775

#x1

#x2

:

#xP

2
666666666664

3
777777777775

þ

0 1 : 0

0 0 : 1

: : :

: : :

1 0 : 0

2
66666666666666664

3
77777777777777775

s1

s2

:

sP

2
666666666664

3
777777777775
¼

#t1

#t2

:

:

#tP

2
66666666666666664

3
77777777777777775

ð14Þ

[22] This is a coupled set of equations for the location
parameters, #X, and the station terms, s. We solve this
iteratively by alternatively solving for each vector, while
leaving the other vector fixed. In the first step the station
corrections are held fixed (either set to zero or to values
obtained elsewhere) and we solve for #X using

A#X ¼ #T� Bs ð15Þ

The events are located with respect to a corrected set of
arrival times. Because there is no coupling between the
event locations at this step, each event can be located
separately from the other events. Next, we solve for a new
set of station terms using

Bs ¼ #T� A#X ð16Þ

Notice that the right hand side is simply the arrival time
residuals; the least squares solution for s will set each
station term to the mean residual of all of the events for the
station. The process is then repeated until a stable set of
locations and station terms is obtained. In Appendix A, we
demonstrate that this algorithm should converge. In
practice, we have found in most cases that convergence is
rapid and that no more than 5 to 10 iterations are necessary.
[23] The method is much faster than hypocentroidal

decomposition because there is no need to use the full A
matrix in the calculations. The approach is also quite
flexible because the station term calculation is performed
separately from the event location calculation, so that any
desired location method can be used, including standard or
preexisting algorithms. However, the nonuniqueness inher-
ent in these equations between the mean cluster location and
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the station terms still exists. In practice, the mean cluster
location is largely determined at the first iteration for the
event locations.
[24] Finally, we note that the static station term method

can be applied even when the events are not in a compact
cluster (Figure 1b). In this case, the station terms will only
be weakly correlated among different events at the same
station because the source-receiver ray paths will sample
different parts of the three-dimensional velocity structure.
However, the method may nonetheless yield some improve-
ment in location accuracy because differences in the shallow
velocity structure beneath each station will be accounted for
by the station terms. In this case, more accurate absolute
event locations are possible, depending upon the details of
the three-dimensional velocity structure that is biasing the
times, azimuthal coverage and relative sizes of the velocity
perturbations.

2.3. Source-Specific Station Terms (SSST)

[25] Static station terms work best when the differences
between the actual travel times in the Earth and those in
the assumed velocity model to each station are the same
for all events. When the seismicity covers a large region
containing significant lateral velocity heterogeneity (e.g.,
Figure 1c), neither the hypocentroidal decomposition
method nor the static station term method is likely to
work very well. In this case, a generalization of the station
term approach, termed the source-specific station term
(SSST) method by Richards-Dinger and Shearer [2000]
can be applied. In this method, the location and station
term calculations are again performed alternatively and the
solution is obtained iteratively, but the station terms no
longer consist of a single value at each station; rather, each
station will have a station correction function which will
vary as a function of source position.
[26] For static station terms, we simply calculate the

station term for each station as the mean of the residuals
at that station from all events. For source-specific station
terms (SSSTs), we calculate a separate correction for each
source-receiver pair at the given station using the residuals
from nearby events. In this case, there is a different value of
the station term vector S for every value of the residual
vector #T; these values are a smoothed version of the
event-specific residual field for each station. This smooth-
ing over adjacent events can be done in a number of
different ways. Richards-Dinger and Shearer [2000]
smoothed over a fixed number of neighboring events using
a natural neighbor tesselation.
[27] Here we will implement the SSST approach by

selecting the nearby events that are located within a sphere
of specified radius rmax around the target event. The station
term for the target event is then computed as the mean
residual of these events. Note that different results will be
obtained depending upon the size of the cutoff distance. If
rmax is set to a large enough distance, then the SSST method
will give the same result as the static station term method.
However, if rmax is set to a very small distance, the number
of events may not be sufficient to obtain a reliable estimate
of the true station term. Thus selection of the cutoff distance
is a key factor in application of the SSST method.
[28] The SSST method shares some of the advantages of

the static station term technique. The event location part of

the calculation is separate from the station term calculation
and can be performed quickly using any desired single-
event location method. Computing the station terms at each
iteration is also a simple calculation; the most numerically
taxing part of this is identifying the events within the cutoff
radius for each target event. In practice, convergence to a
stable set of locations and station terms requires only a few
iterations (although we have not derived a formal proof of
convergence for the SSST algorithm). Note that in theory,
the ST and SSST methods should yield the same locations
for a single compact cluster that is smaller than the applied
SSST cutoff distance rmax.
[29] When Richards-Dinger and Shearer [2000] applied

the SSST method to locate southern California earthquakes,
they obtained their initial locations using the static station
term method, and then used these station terms as a starting
point for the SSST calculation. In this way, they achieved
some improvement in the absolute locations of the events
before focusing on the relative locations among closely
spaced events. A generalization of this approach is to
continuously shrink the SSST cutoff distance rmax between
the first and final iteration. In other words, we start the
cutoff distance with a large value to include all the events
from which we calculate station terms, then decrease it to
some specified minimum distance to calculate station terms
using only the closest events. We will show later that this
method seems to give the best results on our synthetic data
sets.

2.4. Double-Difference (DD)

[30] The double-difference location algorithm
[Waldhauser and Ellsworth, 2000, 2002] allows the simul-
taneous relocation of distributed events by minimizing
residual differences for pairs of earthquakes without explic-
itly solving for station corrections.
[31] The single-event location problem for the kth obser-

vation of earthquake i can be written as

@tik
@x

#xi þ sik ¼ #tik ð17Þ

where sk
i is the path anomaly correction between event i and

station k. Thus we can express the time difference between
the residuals at the same station for two events i and j as

@tik
@x

#xi þ sik �
@tjk
@x

#xj � s
j
k ¼ dr

ij
k ð18Þ

where drk
ij is the residual between observed and calculated

differential travel times between these two events, i.e.,

dr
ij
k ¼ tik � t

j
k

� �obs � tik � t
j
k

� �cal ð19Þ

[32] If the events are close to each other, then their path
corrections are likely to be similar, and so making the
approximation sk

i = sk
j , the path anomalies cancel and we

have simply

@tik
@x

#xi � @tjk
@x

#xj ¼ dr
ij
k ð20Þ
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After combining these equations from all event pairs for a
station, and for all stations, we obtain a system of linear
equations of the form

G#X ¼ d ð21Þ

where G defines a matrix of size MDD � MT (MDD is the
number of double-difference observations) containing
partial derivatives, #X is a vector containing the changes
in hypocentral parameters that we wish to determine, and d
is the data vector containing the double-difference times.
[33] Equivalently, this can be written as

QDDA#X ¼ QDD#T ð22Þ

where

QDDA ¼ G ð23Þ

and

QDD#T ¼ d ð24Þ

[34] QDD is the double-difference operator combining
differences of earthquake arrival times recorded at a given
station k, Dtk

i � Dtk
j (for i 6¼ j and i < j) and has the form

1 : : �1 : : : : 0

1 : : : : : �1 : :

: : : : : : : : :

0 : : : : 1 : : �1

2
66666666664

3
77777777775

ð25Þ

with each row containing only two nonzero terms, 1 and
�1.
[35] The double-difference approach permits different

types of differential arrival time data and choices in terms
of selection and weighting of these data. One of the
advantages of DD is that it is easy to incorporate dt results

Figure 2. Map view of 20 random station locations
(triangles) and 27 specified true event locations (dots) in a
2 � 2 � 2 km grid at 10 km depth (each dot represents
locations at 9, 10, and 11 km depth).

Figure 3. Comparison of different location methods for a
single compact cluster of 27 events from one random
realization. Dots are true locations, and crosses are
computed locations. (a) Single event location top view.
(b) Single event location cross section. (c) JS location top
view. (d) JS location cross section. (e) DD location top view.
(f ) DD location cross section. (g) SSST location top view.
(h) SSST location cross section. In each case, the middle
(middle layer for top view and middle standing surface for
cross section) nine events are shown, not the full 27.
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obtained from waveform cross correlation. DD can also be
applied to phase data alone by selecting dt pairs from the
individual arrival time picks. For small data sets consisting
of a single isolated cluster it is practical to use all available
event pairs. For large numbers of events or distributed
seismicity, it makes sense to restrict the event pairs to those
within some specified maximum separation distance. The
algorithm released by Waldhauser [2001] allows the user to
select this separation distance, as well as weight the differ-
ential times by distance and include absolute arrival time
data if desired.
[36] To facilitate comparisons with the other methods, we

wrote our own version of the double-difference algorithm.
We do not use damping in any of the methods we test. Since
the distance weighting of Waldhauser and Ellsworth should
only work when damping is employed [Wolfe, 2002], we do
not apply distance weighting in our location tests. We do,
however, include an event separation distance cutoff. Thus
QDD does not combine all possible differences of arrival
times recorded by the same station, instead, we only
consider the events in a sphere centered on the targeted
event with the radius set to the cutoff distance, as discussed
previously for the SSST algorithm. Our DD method uses
only these differential times to refine the locations; the
absolute pick times are used to obtain the initial locations
but are not used in the DD algorithm itself.

3. Synthetic Data Tests

[37] We perform all our synthetic tests in a 64 � 64 �
32 km uniform half-space with a P wave velocity of 6 km/s
and a P-to-S velocity ratio of 1.73. We generate 20 random
station locations on the surface of the half-space and a set
of specified earthquake locations. Although more realistic
structures with slower near-surface velocities may result in
downgoing ray paths from the source, our model provides
reasonably approximate ray paths for the 9–11 km deep
events that we model. To simulate the irregular pick
availability of real earthquake data, for each event we
generate P picks with 0.67 probability and S picks with
0.5 probability. Thus each synthetic event is recorded by a
different set of stations with an average of 13 P picks and
10 S picks per event.
[38] The linear location system is solved by minimizing

the L2 norm of the travel time residuals using a conjugate
gradient algorithm. We compute 100 conjugate gradient
iterations, although in most cases the solution converges
much more quickly, depending on the data set and the
starting conditions. For the SSST method, we used 100

conjugate gradient iterations at each location step, and
found that 5 to 10 iterations for the station term calcula-
tion was sufficient. We begin all of the methods with
linearized single event location to obtain a set of starting
locations that are typically shifted somewhat from the true
locations, depending upon the perturbations applied to the
travel time picks. We will consider two forms of errors in
the locations. Absolute location error is the difference
between the computed location and the true location.
Relative error is the difference between the computed
and actual relative locations of two nearby events. Thus
the concept of relative location error only makes sense for
nearby events.
[39] We start our relocation with single event location, for

which the starting locations are some random locations
shifted from the true locations. Then the new locations
from the single event location method are input as the
starting locations for the three targeted techniques. The
hypocentroidal decomposition method does not improve
the mean location of the whole cluster, but the relocations
significantly depend on the starting locations. We choose
the mean location of the starting cluster as the common
reference point and the partial derivatives are fixed to this
point. We constrain both JS and DD methods to have no
mean location shift relative to this reference point during
relocation because we found that even a small amount of
random picking error can produce unstable results for the
DD algorithm if this constraint is not applied. It is likely that
this constraint would be unnecessary if we used absolute
pick times as well as relative times in our implementation of
the DD method.

3.1. Single Isolated Cluster Tests

[40] In principle, all of the location techniques should
yield similar relative locations for a compact event cluster.
Our first test is to locate 27 events in a compact 2 � 2 �
2 km cube with the center at 10 km depth. We apply a cutoff
distance for the DD and SSST algorithms that is large
enough to cover all the events in the cube; in this case
the static station term and SSST methods are equivalent.
Figure 2 shows the distributions of the stations and events
from one random realization of the station positions.
[41] We add two types of noise to the theoretical travel

times: (1) Gaussian distributed station terms with zero mean
and 0.3 s standard deviation (SD) for P picks (scaled by
1.73 for S picks), which are constants for all events recorded
by a given station; (2) Gaussian distributed random picking
errors with zero mean and 0.01 s standard deviation for P
picks and 0.02 s for S picks. Random picking errors
introduce location errors that cannot be improved with

Table 1. Single Cluster Location Results Comparisona

Method

RMS of Absolute Error RMS of Relative Error

Horizontal, km Vertical, km Horizontal, km Vertical, km

Single Event 1.55 2.26 1.14 2.41
JSb 1.10 1.54 0.07 0.34
DDb 1.10 1.54 0.07 0.34
SSST 0.91 1.69 0.06 0.36

aWe show absolute and relative location RMS errors from 60 random realizations. For a given event, the relative locations
are with respect to all the other events in the cluster.

bNo mean location shift during relocation.
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any of the methods discussed here. Since the focus of our
study is on the relative location improvement that can be
achieved by accounting for the station terms, we assign
small values to the random pick errors in order to enhance
the improvements that we will achieve. However, it is
important to include at least some random picking error
because otherwise the algorithms might achieve improve-
ments in absolute location accuracy that are unlikely to be
obtained with real data.
[42] Figure 3 shows the location results of one random

realization of our synthetic data. As we expect, the single
event location method produces quite large errors in both
absolute and relative locations. These locations are equiv-
alent to the standard (catalog) locations for real data. The
shift in the mean cluster location (which dominates the
absolute location errors for the JS, DD, and SSST methods),
results from the random station terms and the finite number
of stations. The size and direction of this shift vary among
the difference random realizations of the synthetic data. The
location map views and cross sections for this example
clearly indicate that all three techniques, JS, DD, and SSST,
yield similar improvements in relative location accuracy.
Furthermore, JS and DD provide almost the same absolute
locations, while SSST relocations are a little different from
those of JS and DD. This is mainly due to the constraint on
the JS and DD methods that the mean location shift is zero
during relocation.
[43] We note that in principle, this constraint on the mean

location shift is not required for the JS and DD methods and
it might be possible in some circumstances to improve the
absolute location accuracy by relaxing this requirement. In
practice, however, we found that if even a very small
amount of random picking error is present in the synthetic
data, the absolute locations for the DD method sometimes
become very unstable and unreliable unless the zero mean
location shift constraint is applied.
[44] We estimate the relocation errors from 60 random

realizations of the synthetic data. In Table 1, we show the

root-mean-square (RMS) of both absolute and relative
location errors. The relative location errors are calculated
for each event relative to all the other events in the cube. As
expected, all three methods (JS, DD and SSST) show
improvement in location accuracy compared to the single
event locations. Although some improvement is achieved in
the absolute location accuracy (by reducing the scatter in the
locations, not from any significant shift in the mean cluster

Figure 4. A random three-dimensional P velocity model
relative to a constant velocity of 6 km/s, generated using a
k�1.8 power law.

Figure 5. Source-specific station terms for the station
shown as the triangle, corresponding to the random 3-D
velocity model in Figure 4.

Figure 6. Earthquake locations and 20 random station
locations for the distributed seismicity test of the location
methods. Each dot represents earthquakes at 9, 10, and
11 km depth in this top view.
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location), the most dramatic improvement is in the relative
location accuracy, where the relative errors in horizontal
position are reduced from 1.1 km to about 70 m. As is
typically the case with real data, the horizontal location
accuracy is much better than the vertical location accuracy.

3.2. Three-Dimensional Velocity Model Tests

[45] It is not surprising that all three techniques provide
similar improvements in relative location accuracy for a
compact cluster. The advantage of the SSST and DD
methods is that they can also be applied to distributed
seismicity. In this case, the events are far enough apart that
the travel time perturbations cannot be assumed constant for
each station. To generate realistic synthetic data for distrib-

uted events, we compute travel time differences resulting
from an isotropic three-dimensional velocity model with
random P velocity variations of 0.3 km/s RMS using a k�1.8

power law. S velocity variations are scaled as 3 times the P
variations. We sum the travel time anomalies along each
source-station ray path to generate realistic spatial correla-
tions in the travel time anomalies. We sum the anomalies
along the straight-line ray paths that would exist in the
unperturbed half space. The three-dimensional (3-D) ray
tracing would be more realistic, but our approximate ap-
proach is probably adequate to generate spatially correlated
station terms of sufficient accuracy to address the relative
location problem that is the focus of this paper. Figure 4
is an example of the isotropic 3-D velocity model, and

Figure 7. Comparison of different location methods for one random realization of the three-dimensional
velocity structure shown in Figure 4. Black dots are true locations, and red dots are computed locations,
and triangles are stations. (a) Single event location. (b) DD location. (c) SSST location. (d) Shrinking box
SSST location. In each case, the middle 183 events are shown, not the full 549.
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Figure 5 shows the resulting station term field for a specific
station location.
[46] As before, for each realization we generate 20

randomly located stations on the surface. We include 549
events in three layers of 183 events in the pattern shown in
Figure 6. Events in each line of earthquakes are separated
by 1 km. The three layers are located at depths of 9, 10, and
11 km. Picks for each event to each station are again
generated with 0.67 probability for P and 0.5 probability
for S. We apply a cutoff distance of 8 km for the DD and
SSST methods. In most cases, this results in about 50
neighboring events in average for each target event in the
calculations. For the shrinking box SSST method, we use a
starting cutoff distance large enough to include all the
events and then decrease the distance by a constant frac-
tional change with each iteration to the final cutoff of 8 km.

[47] Figures 7 and 8 are the map views and cross sections
of the relocation results of one random realization of the
station locations and the 3-D velocity model. Notice the
scatter in the single event locations compared to those of
the other three methods. The difference between absolute
and relative location errors is apparent in these plots. The
reduced scatter in the relative locations sharpens the align-
ment of the events in each line, but the lines are still
displaced from their true locations.
[48] Table 2 compares the location accuracy of the

different methods, as measured by the RMS of absolute
and relative location errors from 60 random realizations.
The relative location errors are calculated for each event
relative to a set of nearby events that are within a range of
2 km both in horizontal distance and in depth. As in the
single event cluster test, the methods improve the absolute

Figure 8. Cross section comparison of different location methods for one random realization of the
three-dimensional velocity structure shown in Figure 4. Black dots are true locations, and red dots are
computed locations. (a) Single event location. (b) DD location. (c) SSST location. (d) Shrinking box
SSST location. In each case, the diagonal 147 events are shown, not the full 549.
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location accuracy only slightly but significantly improve the
relative location accuracy. There are greater errors in the
vertical direction than in the horizontal direction. Finally,
the shrinking box SSST method produces a slight, but
noticeable improvement in absolute location accuracy com-
pared to the other methods. We do not completely under-
stand why the shrinking box method provides this
advantage; it seems to respond to some of the longer-
wavelength structure in the source-specific station term
field that is not included in the DD or SSST methods when
a fixed event separation distance is applied. We performed
some experiments to see if methods that apply a distance
weighting function to the SSST smoothing operator (i.e.,
weighting the nearby events more, the distant events less,
with the weight a smooth function of distance rather than a
simple cutoff at a fixed distance). However, we were not
able to achieve results as good as the shrinking box method
with this approach. We also performed some experiments in
implementing the shrinking box approach to the DD
method by reducing the range cutoff with increasing
iteration number. We obtained some improvements in
relative location accuracy, but the absolute locations were
not as good as those given by the shrinking box SSST
method.
[49] Table 2 also lists a measure of the computation time

for the different methods, relative to single event location.
In our implementation, the SSST technique is significantly
faster than the DD method. This is because the SSST event
locations at each iteration are still performed separately, so
the run timescales approximately as the number of itera-
tions (the station term calculation at each iteration is very
fast compared to the location part of the calculation). In
contrast, in the DD approach the location of every event is
linked to the locations of all of the other events. This
significantly increases the computation time even when the
conjugate gradient method is used to solve the linear
system. However, these results should be considered ap-
proximate because run times often depend upon specific
details of program construction.
[50] Many networks do not produce as many S picks

as we used in our synthetic experiments. To test the
performance of the algorithms under these conditions, we
also perform experiments using synthetic data that only
contained P picks. Although the relocations are not as
good as those obtained with both P and S picks, especially
in depth, we still come to the same conclusion that DD
and SSST produce quite similar relocation results and that

the SSST shrinking box method is slightly better than the
conventional SSST.

4. Discussion

[51] The advantage of our synthetic tests over real earth-
quake data sets is that the true event locations are known so
that it is possible to directly measure the location errors.
Although it is not possible to simulate every feature that
may exist in real data, we have attempted to include the
main factors that affect event locations, including random
picking errors, incomplete and irregular pick distributions,
station terms, and general three-dimensional velocity struc-
ture. We have focused on methods (JS, DD, and SSST) that
attempt to improve the relative location accuracy among
nearby events by taking advantage of the correlated travel
anomalies from these events to each station. Despite differ-
ences in how the methods work, they are all solving the
same underlying problem. Indeed, it is possible to demon-
strate that station term algorithms provide a least squares
iterative solution to the same equations that are used in the
JS and DD methods. Thus it is reassuring that all of the
methods achieve comparable results when applied to iden-
tical synthetic data sets.
[52] The DD and SSST methods can be used for large

numbers of distributed earthquakes. An advantage of the
DD algorithm is that a documented program has been
released to the seismology community [Waldhauser,
2001]. This code also can incorporate differential time
measurements provided by waveform cross correlation, a
feature that is not included in our study, which uses only
arrival time picks. In principle, our synthetic tests could be
adopted to include waveform cross-correlation data by
including differential times of greater accuracy than the
individual picks. This will be a goal of our future work, as
well as experimenting with the effects of some of the
adjustable parameters in the DD and SSST algorithms.

Appendix A: Convergence of Static Station
Term Method

[53] Here we demonstrate the convergence of the static
station term method. Equation (5) gives the linearized
location problem for a set of p = 1, 2, � � � , P earthquakes
recorded by KT stations:

A#Xþ Bs ¼ #T

Table 2. A Comparison of Four Location Techniques Applied to Synthetic Travel Time Data Predicted by

Random 3-D Velocity Modelsa

Method

RMS of Absolute Error RMS of Relative Error

Computation Time (Relative)Horizontal, km Vertical, km Horizontal, km Vertical, km

Single event 2.10 2.28 0.70 0.95 1
DDb 1.73 2.09 0.29 0.47 126
SSST 1.67 1.90 0.30 0.49 5
Shrinking box SSST 1.33 1.59 0.27 0.41 24

aWe show absolute and relative location RMS errors from 60 random realizations. For a given event, the relative locations
are with respect to the events within 2 km. Also we give the computation time of each technique relative to the single event
location.

bNo mean location shift during relocation.
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where #T is a NT vector containing the arrival time
residuals, A defines a NT � MT matrix containing the partial
derivatives which are calculated at a set of initial location
estimates, #X is a MT vector containing the changes in
hypocentral parameters we wish to determine (MT = 4� P),
and s is a KT vector containing static station terms, each of
which is a constant for all events recorded by a given
station. B is a NT � KT matrix that selects the correct station
term for each arrival time, i.e.,

Bp

 �
ij
¼

1 when #tp
 �

i
is from station j

0 otherwise

8<
:

[54] This is a coupled set of equations for the unknowns
#X and s, which may be solved iteratively by first solving
for the locations#X while holding the station terms s fixed,
then solving for the station terms s while holding the
locations #X fixed, etc. This method has been applied
for many years in seismology and was described by
Frohlich [1979]. Here we show that this method is equiv-
alent to a power series, which should converge to the least
squares solution for #X and s.
[55] For the first iteration, we begin with zero station

terms:

s1 ¼ 0

then we solve the single event location problem starting
with the initial guess of the hypocenter parameters and
data,

A#X1 ¼ #T

#X1 ¼ Ay#T

but since the data cannot be fit perfectly even with the
adjusted locations, we will obtain a new set of travel time
residuals R1. The next step is to solve for the station terms
from the new locations.

R1 ¼ #T� A#X1

¼ #T� AAy#T

¼ INT
� AAy� �

#T

s2 ¼ ByR1

¼ By INT
� AAy� �

#T

#T2 ¼ #T� Bs2

¼ #T� BBy INT
� AAy� �

#T

¼ INT
� BBy þ BBy� �

AAy� � �
#T

where R1 is a travel time residual vector and dagger means
generalized inverse.
[56] We continue with the second iteration as follows:

A#X2 ¼ #T2

#X2 ¼ Ay#T2

¼ Ay INT
� BBy þ BBy� �

AAy� � �
#T

R2 ¼ #T2 � A#X2

¼ #T2 � AAy#T2

¼ INT
� AAy� �

#T2

¼ INT
� AAy� �

INT
� BBy þ BBy� �

AAy� � �
#T

s3 ¼ ByR2

¼ By INT
� AAy� �

#T2

¼ By INT
� AAy� �

INT
� BBy þ BBy� �

AAy� � �
#T

#T3 ¼ #T2 � Bs3

¼ #T2 � BBy INT
� AAy� �

#T2

¼ INT
� BBy þ BBy� �

AAy� � �
#T2

¼ INT
� BBy þ BBy� �

AAy� � �2
#T

[57] This can be generalized to the k + 1 iteration (k  0):

#Xkþ1 ¼ Ay#Tkþ1

¼ Ay INT
� BBy þ BBy� �

AAy� � �k
#T

skþ2 ¼ ByRkþ1

¼ By INT
� AAy� �

� INT
� BBy þ BBy� �

AAy� � �k
#T

[58] So far, we have shown the changes in hypocentral
parameters #Xk and station terms sk can be expressed as
vector sequences. To show that these sequences are con-
vergent, we use the equivalence between least squares
fitting and orthogonal projection. Our problem can be
defined as follows: we have a data space T and two model
spaces, MU and MV, the space of the location vectors and
the space of the station term vectors. The linear function
FU: MU ! T gives the data vector produced by each
location vector, and FV: MV ! T gives the data vector
produced by each station terms vector. Let U = FU(MU) and
V = FV(MV).
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[59] If t is the observed data vector (i.e., #T in our
previous notation), then our iteration scheme proceeds as
follows. First, we set the initial station term contribution to
the data vector to zero:

v1 ¼ 0

u1 ¼ PU t� v1ð Þ ¼ PU tð Þ

v2 ¼ PV t� u1ð Þ ¼ PV tð Þ � PVPU tð Þ

..

.

vkþ1 ¼ PV t� ukð Þ

ukþ1 ¼ PU t� vkþ1ð Þ

where PU is the orthogonal projector of T onto U and
PV is the orthogonal projector of T onto V. Note that
PU = AAy and PV = BBy in our previous notation. Then
for k  1,

ukþ1 ¼ PU t� PV t� ukð Þ½ 


¼ PU tð Þ � PUPV tð Þ þ PUPV ukð Þ

¼ �uþ PUPV ukð Þ

¼ Iþ PUPV þ � � � þ PUPVð Þk�1
h i

�uþ PUPV u1ð Þ

where �u = PU(t) � PUPV(t)

vkþ1 ¼ PV t� PU t� vkð Þ½ 


¼ PV tð Þ � PVPU tð Þ þ PVPU vkð Þ

¼ v2 þ PVPU vkð Þ

¼ Iþ PVPU þ � � � þ PVPUð Þk�1
h i

v2

[60] They will converge if kPVPUk < 1 and kPUPVk < 1.
In finite-dimensional spaces, these inequalities hold
whenever U \ V = {0}. However, in our case there is
a nonuniqueness problem in that part of the data vector
produced by the model can come from either the
location vector or the station term vector. For example,
a constant time added to the data vector could corre-
spond to a change in the earthquake origin times or a
change in the station terms. For this reason, in general
U \ V 6¼ {0}.
[61] In this case, letW = U \ V, U = eU +W, and V = eV +

W, where eU ? W and eV ? W. We then have eU \ eV = {0}.
We can write t = ~u + ~v + w + ~t, with ~u 2 eU, ~v 2 eV, w 2 W,
and ~t 2 (eU + eV + W)?.

[62] Some remarks are

eU \ V ¼ U \ eV ¼ 0f g

PU ¼ PeU þ PW

PV ¼ PeV þ PW

PeUPW ¼ PWPeU ¼ 0

PeVPW ¼ PWPeV ¼ 0

PUPV ¼ PeUPeV þ PW

PVPU ¼ PeVPeU þ PW

[63] For the station terms vector we have

v2 ¼ PV tð Þ � PVPU tð Þ

¼ PeV tð Þ þ PW tð Þ½ 
 � PeVPeU tð Þ þ PW tð Þ½ 


¼ PeV tð Þ � PeVPeU tð Þ

and for k  1

vkþ1 ¼ v2 þ PVPU vkð Þ

¼ v2 þ PeVPeU vkð Þ þ PW vkð Þ

Clearly v2 2 eV, and if vk 2 eV (k  2), then PW (vk) = 0, so
vk+1 2 eV. Thus, by induction, vk 2 eV for all k, PW(vk) = 0,
and for k  1

vkþ1 ¼ v2 þ PeVPeU vkð Þ þ PW vkð Þ

¼ v2 þ PeVPeU vkð Þ

¼ IeV þ PeVPeU þ � � � þ PeVPeUð Þk�1
h i

v2ð Þ

Since eU \ eV = {0}, kPeV PeUk < 1, so this series converges.
[64] For the location vector, we have

ukþ1 ¼ PU t� vkþ1ð Þ

Since {v1, v2, . . .} converges and PU is continuous, then
{u1, u2, . . .} also converges.
[65] Our proof for convergence is limited to the least

squares (L2 norm) solution of the static station term case
described in the text. It can be shown that the proof fails for
all non-Euclidian norms, but we do not know whether the
result itself fails. We have found in practice (for both real
and synthetic data) that convergence is quite rapid, typically
being achieved in five iterations or less. We have also
noticed that this iterative method seems to work for L1
norm locations algorithms as well, although we have not
found a formal proof of convergence. Finally, this approach
forms the basis for the SSST algorithm, which, although
more complicated than static station terms, also achieves
convergence in a small number of iterations in our tests on
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synthetic data. The SSST algorithm applied by Richards-
Dinger and Shearer [2000] to the southern California
seismic catalog used a grid-search L1 norm approach and
achieved a reasonably stable result after 10 iterations.
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