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Ray tracing in anisotropic media with a linear gradient 
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SUMMARY 
In general, ray paths in anisotropic media can be found by solving the sixth-order kinematic 
ray equations. In this paper it is shown that in media where the density-normalized elastic 
parameters depend quadratically on one coordinate, i.e. the velocities vary linearly, the 
projection of the ray path on to the slowness vector plane, which is fixed, is the same shape as 
the cross-section of the slowness surface. Thus the ray path can be found by solving a 
polynomial equation. The deviation of the ray path from the plane and the travel time can be 
calculated by evaluating a simple integral along the ray. 
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INTRODUCTION 

The study of wave propagation in anisotropic media is 
attracting much attention (e.g. November 1987 issue of this 
journal). Although the fundamental theory is well 
understood (e.g. Crampin 1981; Fryer & Frazer 1984), it 
remains a significant task to compute synthetic seismograms 
in realistic anisotropic media. As in isotropic media, an 
attractive approximation is to use asymptotic ray theory. 
Again the fundamental theory is well understood (cerveny 
19721, but the ray equations are sufficiently complicated that 
computations are expensive. In isotropic media the situation 
is considerably simpler. Although the differential ray 
equations are of the same order, the elements in the 
equations are much simpler and easier to compute. More 
importantly, the ray equations need not be solved 
numerically as several analytic solutions exist (Cervenf 
1987). Numerical solutions are only needed when 
interpolation methods are used for which no analytic 
solution is known. An example is the use of cubic splines to 
avoid velocity or gradient discontinuities (SEIS83-Cervenf 
1985a). Normally these higher-order interpolation methods 
are used to obtain smooth travel-time curves to simplify two 
point ray tracing and the application of geometrical ray 
theory. Our knowledge of the model structure does not 
require or justify the use of a high-order interpolation 
method. It is merely required to avoid or reduce the 
singularities of geometrical ray theory. Recent extensions of 
geometrical ray theory for the computation of synthetic 
seismograms, e.g. the Gaussian beam method (terveng 
1985b) and Maslov asymptotic theory (Chapman & 
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Drummond 1982), circumvent these problems by band- 
limiting and smoothing the seismograms. For these purposes 
it is no longer necessary to ray-trace through smooth models 
and simple interpolation methods can be used. 

The simplest method of interpolation is to divide the 
model into homogeneous elements so that all ray segments 
are straight. However, the discontinuities in velocities may 
cause significant problems as rays can be totally reflected, 
producing notable discontinuities in the travel-time curves. 
A popular alternative is to interpolate the velocity linearly 
(Will 1976; Whittalk Clowes 1979; Marks & Hron 1980). If 
the model is divided into elements of tetrahedra, laterally 
homogeneous layers, etc., the linear velocity function is 
uniquely defined in each element and continuous between 
elements. In this paper we only consider ray tracing through 
a single model element in which a linear velocity function is 
assumed. As in isotropic models, laterally inhomogeneous 
structures can be modelled by combining many such 
elements. Within the element, we refer to the velocity as 
varying in the ‘vertical’ direction and the element as being 
‘horizontally’ homogeneous. These terms are used for 
convenience and, in general laterally heterogeneous models, 
the velocity gradient in each element can be in a different 
direction which differs from the true vertical. 

In isotropic media, ray paths in a linear velocity function 
are arcs of circles. Thus ray tracing is simplified as the 
simple geometry allows rays to be solved across each 
element in a single step without finding intermediate points, 
however large the element. In this paper we investigate the 
same problem in anisotropic media. As the velocities 
depend only on the ‘vertical’ coordinate, the ‘horizontal’ 
components of the slowness vector perpendicular to this 
direction are constant. Thus the slowness vector remains 
within a fixed plane defined by the ‘vertical’ direction and 
the fixed ‘horizontal’ slowness direction. In the next section 
we show that the projection of the ray path on to this plane 
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is the same shape as the cross-section of the slowness 
surface. Bennett (1968) obtained a similar result for 
transversely isotropic media. In isotropic media, the 
slowness surface is a sphere and the cross-section a circle, as 
expected. Thus two coordinates of the ray path can be found 
by solving a polynomial for the slowness surface. Examples 
are given for some interesting anisotropic media in the third 
section of this paper. The third coordinate, the deviation of 
the ray path from the slowness plane, can be calculated by 
evaluating a simple integral along the ray, as can the travel 
time. 

THEORY 

The theory of ray tracin in inhomogeneous, anisotropic 
media is well known ( 8 ervenf 1972). We follow the 
standard notation and only quote the results we need. A 
slowness surface (e.g. Fig. l a )  in an anisotropic medium i s  
defined by the equation 

Figure 1. (a) The slowness surface defined by G ( x , p ) = l  with 
p z  = 0. The normal to the slowness surface, V,G, makes an angle Y 

with the slowness vector p. (b) The ray path projected onto the 
x1-x3 plane. The position vector x makes an angle Q, with the 
x,-axis, the slowness vector p is perpendicular to x, and the ray 
segment, dx ,  is in the direction of V,G. 

where G is an eigenvalue of the characteristic equation 

l q k  - G6jk) = 0. (2) 
In these equations qk is an element of the Christoffel 
matrix, q k  = piplaiikl. The density-normalized elastic para- 
meters are ajjkl = cjjkl/p where cjjk[ are the anisotropic elastic 
parameters, and p i =  dz/dx,  are the components of the 
slowness vectors. The travel time is ‘G and density is p. 

The partial differential equation (1) can be solved by the 
method of characteristics to give the kinematic ray 
equations: 

We now consider the special case where the ‘velocity 
gradient’ is constant. A linear velocity function is commonly 
used in isotropic models as it is a simple method of 
interpolation and results in circular ray paths. Without loss 
in generality we can rotate the coordinate system so that the 
elastic parameters are functions of one coordinate, x 3 ,  only. 
Again without loss in generality, we can translate this 
coordinate so its origin coincides with the zero-velocity 
plane (obviously not part of the physical model but obtained 
by extrapolation of the linear velocity). We later assume 
that x 3  is chosen so that the model exists for x 3  < 0, e.g. Fig. 
l(b). We assume that these coordinate transformations have 
been applied and the above equations are written with 
respect to these coordinates. Thus the density-normalized 
elastic parameters can be written 

aijkdx)  = AijkEx$ (4) 

As the elastic parameters are only a function of x 3 ,  the 
slowness surface equation (1) is independent of x1 and xz. 
Thus the ray equations (3) give 

(dp , /d z )  = ( d p , / d z )  = 0 (5) 
and p 1  and p z  are constant along the ray, the well known 
conservation of ‘horizontal’ slowness (calling x 3  the ‘vertical’ 
coordinate). Again, without loss in generality, we can rotate 
the coordinate system about the ‘vertical’ x,-axis so p 2  = 0. 
We assume that this transformation has also been applied to 
the above equations. Note that this coordinate transforma- 
tion does not imply that xz is zero, as in anisotropic media 
the slowness vector is not the same as the ray direction. 

With these three transformations, the equation for the 
slowness surface (1) can be reduced to 

( 3 x 3 ,  P l t  P 3 )  = 1. (6) 
As G is a homogeneous function of second order in p i ,  
Euler’s theorem gives (eervenf 1972) 

p i (ac iap i )  = 2 ~ .  

Combining with the ray equations (3) and G = 1, we obtain 

pi(dxi/dz) = 1. 

For the linear velocity behaviour, G is quadratic in x 3  so, 
similarly, 

x3(aG/ax3) = 2G, 

and again combining with the ray equations (3), (5 )  and 

(7) 



Rays in anisotropic media 577 

G = 1, we have 

x,(dp,/dt) = -1. 

Combining equations (7) and (8), we obtain 

(d/dt)(x * p) = 0. 

The origin of x is restricted to the plane x3 = 0, but can be 
translated anywhere in this plane. For some initial point on 
the ray, we chose the x1 origin so x and p are perpendicular, 
and then obtain the result 

x . p = o  (9) 
everywhere on the ray (Fig. lb).  The x 2  origin is arbitrary 
and can be chosen so x2 = 0 at an initial point on the ray. 

The slowness surface (6) scales inversely with the 
x,-coordinate. Thus if we choose to fix this coordinate at 
some arbitrary value, x3 = X,, a constant, we can obtain the 
slowness surface at any 'depth' from 

G ( x 3 ,  L P l ,  X -p3) x3 = 1. 
x3 x3 

Using result (9), this can be rewritten 

p1 (11) 
P1 G ( X , ,  - x 3 ,  - - X I  = 1. 
x3 x3 

For fixed x, ,  e.g. X,, equation (10) connectsp, andp,, and 
defines the slowness surface. From equation (5), p1 is fixed 
along a ray, and thus equation (11) connects x1 and x,, and 
defines the ray path (in the ~ 1 - ~ 3  plane). But the function G 
is the same in both cases, and so the ray path can be 
obtained by rotating the slowness surface through 90" (so 
the p3-axis corresponds to the x,-axis, and the p,-axis to 
minus the +-axis) and scaling appropriately, i.e. the 
slowness values for the surface at x3 = X ,  are multiplied by 
IX,/p,l (remember in (11) that X, is negative). A similar 
result was obtained by Bennett (1968) for the special case of 
transversely isotropic material. 

Equation (11) for the ray path does not imply that x 2  = 0, 
only that the projection of the ray path onto the x1-x3 plane 
is similar to the slowness curve. The transverse horizontal 
coordinate, x 2 ,  is undetermined by this equation. It can be 
determined by integrating the appropriate ray equation (3), 

On symmetry planes the integrand is zero and the ray does 
not deviate from the plane. We return below to a discussion 
of evaluating integral (12) in general. 

In order to evaluate the travel time, we consider equation 
(7). The slowness vector can be written as 

to satisfy (9). Thus from (7) we obtain 

d z = p 1  hl +P3 h 3  

where d# is the angle subtended at the origin by the ray 

segment dx (Fig. lb). Thus 

dz =pl 1x1 sec 4 d$ (14) 
where 4 is the angle between x and the +-axis. The travel 
time between two points can be obtained from 

where x = tanh-' (sin 4) (so dx = sec 4 d4).  We have 
written the result in this form as in isotropic media 1x1 is 
constant (the radius of the circular ray) and 

= PlIXI (x2 - Xl),  

the well known travel-time result for a linear velocity 
function (Gebrande 1976) with p1 1x1 = 1/ IVvl. In anisotro- 
pic media, 1x1 will vary slowly and the integral (15) is easily 
evaluated. 

It is easily shown that expression (14) is equivalent to 
distance divided by velocity. It is well known that the ratio 
of the normal (phase) velocity V and the ray (group) 
velocity v gives the cosine of the angle between the ray and 
the normal to the wavefront (Cervenf 1972), i.e. 

cos v = ( V / v ) ,  

where v is illustrated in Fig. 1. Thus 

ldxl = 1x1 d$ sec v 

= 'v 1x1 d4/K 
but 

p1 sec 4 = (pi = V-', 

so 

dt  = Idx( /v 

as required. 
The integral (12) can be converted into an integral with 

respect to 4 (or x) using (14). The partial derivative of G 
can be obtained without differentiation in the standard 
manner, i.e. 

4 (dG I 3~ 2)  = a 2jklpIDjk ID, 

where we have used the usual notation for the Ds (Cervenf 
1972). In this expression p1 is constant, p 2 = 0  and 
p3 = p1 tan 4. Straightforward but algebraically complicated 
expressions can therefore be obtained for dC/dp, in terms 
of 4. The evaluation of the integrals (12) and (15) is simple 
compared with the ray equations (3) as the ray path is 
known independently. 

EXAMPLES 

As an example, we calculated ray paths for an anisotropic 
model of aligned cracks in the uppermost crust. We used the 
theoretical model of Hudson (1980) to determine the elastic 
constants of a host rock (a = 4.5 km s-', p = 2.53 km s-l, 
p = 2.8 Mg m-,) containing aligned, water-filled cracks with 
aspect ratio d =0.001 and crack density E =0.1. The 
resulting density-normalized elastic constants are: allll = 
20.04, a2222 = 20.22, a1212 = 5.10, a2323 = 6.38, a1122 = 
7.41 km2s-2, with a (100) hexagonal symmetry axis. This 
model is then rotated 30" about the (010) axis for the first 



578 P. M .  Shearer and C. H .  Chapman 

. . . .  z. Y 2: ._ . .  ....... ....... ....... - 0 -  -- .................................. 
N I . I . I . I . I . 1  

Horizontal slowness (s/km) (4 

2- Y 0: 
W 

2 -  

4 -  
5 -  a 
c3 

r 

2 
v 

A 

Range (km) 

Figure 2. (a) Slowness sheet cross-section. (b) Corresponding ray 
path for an aligned crack model of anisotropy with a vertical 
velocity gradient. Points are shown every 0.05 s along the ray path. 

example (Fig. 2), and rotated 30" about the (001) axis for 
the second example (Fig. 3). We assume that aijkl varies with 
x3 according to (4), and that the above values apply at zero 
depth corresponding to the reference coordinate, X 3 .  Thus 
the depth is ( X ,  -x3) and in the examples we take 
X ,  = -4.405 km. For qP-waves, the resulting velocity 
gradient is about 1.0 s-'. 

In Fig. 2(a), we show a cross-section (in the p 1  - p 3  
plane) of the qSP-wave slowness sheet for the aligned crack 
model at zero depth, where following the notation of 
Crampin (1981), qSP is defined as the quasi-shear wave with 
polarization within a symmetry plane of the anisotropy. The 
model has been rotated by 30" so that the symmetry axis 
dips 30" from the horizontal (appropriate if the aligned 
cracks dip 60"). Because of this rotation, the slowness sheet 
is not symmetric about the horizontal p,-axis. Fig. 2(b) 
shows a qSP-wave ray path for this model, assuming a 
horizontal slowness p ,  = 0.2037 s km-'. The ray path was 
calculated using the kinematic ray equations (3); points are 
shown every 0.05s along the ray path. As expected, the 
shape of the ray path is the same as the shape of the 

corresponding slowness sheet rotated by 90". The curves 
shown in Fig. 2 have been scaled such that they are the same 
size; this scaling was obtained by multiplying the slowness 
values by lX3/pll. Points A , B  and C show corresponding 
points on the slowness surface (Fig. 2a) and ray path (Fig. 
2b). The turning point (B) does not correspond to zero 
vertical slowness, but to the point at which the normal to the 
slowness surface is horizontal. The travel time of 5.10 s 
between points A and C can be calculated either from the 
kinematic ray equations (3) or by the integral (15). 

In this example, the cross-section shown in Fig. 2(a) is a 
symmetry plane in the anisotropy, so the normal to the 

0.0 0.1 0.2 0.3 0.4 
(4 Horizontal slowness (s/km) 

Figure 3. (a) Slowness sheet cross-section. (b) Ray path plan view. 
(c) Ray path projection for an aligned crack model of anisotropy 
with a vertical velocity gradient. Points are shown every 0.05 s along 
the ray path. 
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slowness surface is within this plane, and the corresponding 
ray path is also confined to this plane. More generally, the 
ray path will not be confined to a plane. This is illustrated in 
Fig. 3(a), which shows a cross-section (in the pl -p3  plane) 
of the qSP-wave slowness sheet for the aligned crack model 
at zero depth. The model has been rotated 30" about the 
(001) axis, so that the symmetry axis is not within the plane 
of the cross-section. Normals to the slowness surface (the 
ray directions) deviate from this plane, and thus the 
corresponding ray path is not confined to the plane. This is 
illustrated in Figs 3(b) and 3(c), which show a ray path for 
this model, calculated from the kinematic ray equations 
assuming a horizontal slowness p1 = 0.2070 s km-l. Points 
are shown every 0.05s along the ray path. The plan view 
(Fig. 3b) illustrates how the ray path bends out of the xl-x3 
plane. This ray path deviation was discussed by Crampin et 
a[. (1982) and Shearer & Orcutt (1985). However, the 
projection of the ray path into the x1-x3 plane (Fig. 3c) is 
exactly the same shape as the slowness curve (Fig. 3a). The 
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Fqure 4. (a) Slowness sheet cross-section. (b) Corresponding ray 
path for an anisotropic model with a vertical velocity gradient, 
based on the elastic constants for &-quartz. 
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Figure 5. As in Fig. 4, but for iron. 

x2 component of the ray can be obtained from integral (12), 
while the travel time can be obtained from integral (15). 

When the anisotropy is strong, such that sections of the 
slowness surface are concave outward, the resulting ray 
paths can appear somewhat peculiar. This is illustrated in 
Figs 4 and 5, which show slowness sheets and corresponding 
ray paths for two extreme anisotropy models. Fig. 4(a) 
shows a cross-section (in the p1-p3 plane) of a @-wave 
slowness sheet for a-quartz. a-quartz has trigonal symmetry 
with density-normalized elastic constants of alll l  = 32.73, 

= 40.45, a1122 = 2.64, a1133 = 4.49, a2323 = 21.86, 
u1123 = -6.76 km2 sC2 (Bechmann 1958). For this example, 
we have rotated the anisotropy by 90" about the (010) axis. 
Figure 4(b) is simply a 90" rotation of Fig. 4(a) and shows 
the corresponding ray path if a linear vertical velocity 
gradient (4) is assumed in the material. The scale on Fig. 
4(b) is not shown, since it will depend upon p1 and X, .  In 
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this case, the ray has three different turning points, i.e. two 
concave upward turning points separated by a concave 
downward turning point. 

Figure 5(a) shows a cross-section (in the p1-p3 plane) of a 
@-wave slowness sheet for iron. Iron has cubic symmetry 
with density-normalized elastic constants of al l l l  = 29.64, 
alIz2 = 17.71, a2323 = 14.78 km2 s V 2  (Musgrave 1970). For 
this example, we have rotated the anisotropy 20" about the 
(010) axis. If a vertical velocity gradient is assumed in the 
material the resulting ray path will correspond to Fig. 5(b). 
In this case, the ray points backwards (i.e. opposite to its 
eventual destination) near one of the surface points, and 
there are relatively straight sections along the ray path 
where the ray travels vertically or horizontally. The sharp 
bends in the ray paths in Figs 4(b) and 5(b) would be 
diagnostic of lateral heterogeneity in isotropic media. 
However, in these examples the material is laterally 
homogeneous, and the bends in the ray paths arise purely 
from the depth-dependence of the anisotropy. 

CONCLUSIONS 

The equivalence between slowness curves and ray paths 
provides a relatively efficient way of calculating ray paths 
through gradient regions. Points on the ray path are 
constructed by solving the polynomial (1) for p with fixed x, 
and scaling appropriately. Each point is obtained directly 
without requiring the solution for previous points, whereas 
the kinematic ray equations must be solved for a sequence 
of points along the ray. This is an advantage in solving 
two-point ray tracing problems etc., since intermediate 
points along the ray path need not be found until the correct 
ray is known and the travel time is calculated. In addition, 
the numerical instabilities associated with ray tracing near or 
through singularities on the quasi-shear-wave slowness 
sheets are completely avoided as the ray paths are 
constructed geometrically. The main limitation of this 
technique is that it does not provide a way of ray tracing 
through regions which contain a gradient between different 
types of anisotropy. For example, it is not applicable to a 
region where the anisotropy orientation rotates smoothly 
with depth (such as the 'anvil' model of the lithosphere 
beneath southern Germany proposed by Fuchs 1983), or 
where anisotropy grades smoothly into isotropy (such as the 
model for the upper oceanic crust proposed by Stephen 
1985). In these cases the kinematic ray-tracing equations 
must be used. However, if significant portions of anisotropic 
models can be approximated as linear gradients, then a 
general anisotropic ray tracing code could be made more 
efficient by using the relationships discussed here. 
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