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SUMMARY 
Ray tracing through gradients in anisotropic materials is complicated by singularities where 
the two quasi-shear wave slowness sheets cross or touch. Difficulties associated with such 
points can be removed by explicitly including polarization in the ray tracing equations. 
Slowness sheet and wavefront plots show the polarization and velocity behavior of various 
anisotropy models of aligned cracks in the upper crust. A simple scaling of the elastic tensor 
with depth can be shown to be approximately correct for models of aligned cracks within an 
isotropic host matrix with a linear velocity gradient. Ray tracing examples for models of 
aligned cracks within a strong vertical velocity gradient in the uppermost crust demonstrate 
various features of azimuthal anisotropy, including amplitude and polarization anomalies and 
shear-wave splitting. Quasi-shear wave polarizations typically twist along ray paths, with 
stronger twisting near the symmetry axis in hexagonally symmetric media. Strong anisotropy 
can cause unusual effects, such as ray paths which have three turning points in laterally 
homogeneous models. 
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INTRODUCTION 

Anisotropy is of increasing importance in seismic studies of 
earth structure at all depths. Observations of upper crustal 
anisotropy resulting from preferred crack orientation have 
been made for both the oceanic (e.g. Stephen 1981, 1985; 
White & Whitmarsh 1984; Shearer & Orcutt 1985, 1986) 
and the continental crust (e.g. Crampin et al. 1980; Booth et 
al. 1985; Crampin & Booth 1985; Crampin et nl. 1986). 
Uppermost mantle anisotropy, first recognized from oceanic 
Pn arrivals (Hess 1964; Raitt et al. 1969), is now routinely 
observed in oceanic refraction experiments (e.g. Au & 
Glowes 1982; Shimamura 1984; Shearer & Orcutt 1985, 
1986), and has also been observed in continental Pn studies 
(Bamford 1977). Indications that this mantle anisotropy 
extends to considerable depths are provided by surface 
waves studies (e.g. Forsyth 1975; Crampin & King 1977; 
Mitchell & Yu 1980; Kirkwood & Crampin 1981; Tanimoto 
& Anderson 1985) and observations of shear-wave splitting 
(Ando, Ishikawa & Yamazaki 1983; Ando 1984). Recently, 
anisotropy in the inner core has been proposed to explain 
anomalous PKIKP travel-time and normal mode data 
(Morelli, Dziewonski & Woodhouse 1986; Woodhouse, 
Giardini & Li 1986). 

Most of the studies mentioned above have used 
comparatively simple travel-time or polarization analysis. 
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Recent developments regarding the computation of 
synthetic seismograms for anisotropic media (e.g. Booth & 
Crampin 1983; Fryer & Frazer 1984) promise that future 
studies will begin to use more of the full seismic waveform. 
However, such calculations require large amounts of 
computer time (many factors greater than for isotropic 
media), so their use is not yet routine. For this reason, 
concurrent development of relatively simple ray theoretical 
methods of modelling anisotropy is important, both for 
understanding the results of the full synthetic calculations 
and to provide first-order models of earth structure. 

Our purpose in this paper will be to show examples of ray 
tracing for azimuthally anisotropic media with a steep 
vertical velocity gradient (such as might be appropriate for 
models of vertical cracks in the uppermost crust), with the 
purpose of understanding the predicted travel-time, 
amplitude and polarization anomalies. A significant result of 
this analysis is that quasi-shear wave polarizations typically 
twist along ray paths, with stronger twisting near the 
symmetry axis of hexagonal material. This causes coupling 
between the quasi-shear waves, which is discussed in 
Chapman & Shearer (1989, henceforth referred to as 
Paper 11). 

RAY TRACING THEORY 

This section first briefly summarizes results from cerveng 
(1972) and Cervenf, Molotkov and PSenEik (1977) and then 
discusses the problem of tracing rayS near points where the 
shear-wave slowness sheets come together. 
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The eigenvalue equation for anisotropic media may be 
expressed as 

(aijklfijfil - v26ik)gk = 0, (1) 
where a is the density normalized elastic tensor, p is the 
slowness unit vector, g is the polarization unit vector, and u 
is the phase velocity. Defining the slowness vector p = p/v, 
and the Christoffel matrix ck = aiiklpipI, we can rewrite this 
as 
( c k  - G6ik)gk = 0, (2)  

where G = 1 represents a solution to (1). Equation (2) has a 
non-trivial solution only when one of the eigenvalues of the 
matrix r (GI, G2 or G3) is equal to one. These three 
solutions correspond to a quasi-compressional wave and two 
quasi-shear waves. We thus have the system of non-linear 
partial differential equations G,(pi ,  xi) = 1, which can be 
solved by the method of characteristics (cervenf 1972) and 
expressed as 

i = 1, 2, 3. ( 3 )  dt -2 api ’ d t  2 axi ’ 
This system of ordinary differential equations could be used 
for ray tracing. However, a more convenient form for these 
equations may be derived by finding expressions for the 
partial derivatives of the eigenvalues G,. The resulting 
equations are (see Cervenf 1972 for details of the derivation 
and expressions for Dii) 

(4) 

This system of equations is completely general and suitable 
for numerical solution (i.e. ray tracing) provided aijk, and its 
spatial derivatives are known and finite throughout the 
region of interest. Initial conditions for x and p must be 
specified which satisfy G,(p, x) = 1; it is these initial 
conditions which specify the ray type (i.e. quasi- 
compressional or one of the two quasi-shear waves). A 
second-order Runge-Kutta method was used for the ray 
tracing examples in this paper. 

No problems will occur when these equations are used for 
quasi-compressional ( q P )  waves, However, difficulties arise 
for quasi-shear ( q S )  waves when the two shear-wave 
slownesses coincide. In this case, the eigenvalues are 
degenerate, the denominator term D = 0, and the equations 
(4) cannot be used. This situation occurs when the two 
shear-wave slowness sheets cross or touch each other (see 
Crampin & Yedlin 1981 for a discussion regarding the 
nature and geometry of these slowness sheets). Although 
such points may be rare in the sense that they represent an 
infinitely small proportion of the area of the slowness sheets, 
they often cause trouble in ray tracing problems. In practice, 
numerical stability problems arise whenever the shear-wave 
slowness sheets come close to each other, regardless of 
whether they actually touch or not. 

The reason that equations (4) cannot be used for the case 
of degenerate eigenvalues is that the expressions depend 
upon the polarization, which is undetermined at these 
points. The matrix Dik/D can also be expressed as the 
product of unit polarization vectors (i.e. cervenf & Firbas 

1984; Gajewski & PSen&k 1987): 

and equations (4) rewritten as 

( 5 )  

These equations can be used even at points where the 
slowness sheets cross, provided the polarization is known. 
All the ray tracing examples in this paper involve 
hexagonally symmetric anisotropy, for which there are 
relatively simple expressions for the wave polarization (see 
Appendix), which can be used directly in (6). Generally 
little difficulty is caused by situations in which the slowness 
sheets cross, provided that the polarizations on the sheets 
are not changing rapidly with respect to position (such as at 
intersection singularities in hexagonally symmetric mate- 
rials). However, strange results can occur at or near 
singularities in the polarization (such as occur for qS-waves 
on the symmetry axis of a hexagonally symmetric material). 
In these regions the polarizations can change very rapidly 
along the ray paths, and the results predicted by ray tracing 
will generally be incorrect because of the coupling which 
occurs between the quasi-shear waves (see Paper 11). 

ANISOTROPY MODELS 

The ray tracing equations discussed in the previous section 
are very general and can be used for any desired 
three-dimensional continuous distribution of the 21 inde- 
pendent components of the elastic tensor, which clearly 
allows for extremely complicated models. However, we will 
consider only simple models of hexagonally symmetric 
media with properties which vary only with depth. More 
complex anisotropy models are certainly possible, but 
hexagonal symmetry is suitable for studying most forms of 
anisotropy which have actually been observed in the earth 
(i.e. aligned cracks, periodic thin layering, preferred 
orientation of a single crystal axis). Despite their relative 
simplicity, these models are sufficient to demonstrate many 
of the unusual features of anisotropic wave propagation. 
The restriction to hexagonally symmetric material still 
allows for seven independent anisotropic parameters (five 
plus the symmetry axis direction), a substantial increase 
from the two parameters of isotropic material. 

The anisotropy models are derived from theoretical 
expressions for the elastic response of a material containing 
cracks (Hudson 1980, 1981), and demonstrate the effect on 
seismic velocities of aligned ellipsoidal cracks within a host 
rock (see Crampin 1984 for other examples of aligned crack 
models). These models are characterized by the elastic 
properties of the host matrix and the material in the cracks, 
and two additional parameters, the crack aspect ratio and 
crack density. The crack aspect ratio d is the ratio of crack 
thickness to crack diameter. The crack density E is the 
number of cracks per unit volume and is defined as 
E = Na3/V,  where N is the number of cracks per volume V, 
and a is the crack radius. The Hudson (1980) theory is valid 
at small values of crack aspect ratio and density (d ,  E << 1). 
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Figure 1. Slowness sheets, polarizations, and wavefronts for Model 
1 (thin water-filled cracks, d = 0.001, E = 0.1). Polarizations are 
indicated by arrows with conical tips; the qSR-wave polarizations 
are perpendicular to the plane of the paper. 
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Figure. 2. Slowness sheets, polarizations, and wavefronts for Model 
2 (thick water-filled cracks, d = 0.1, E = 0.1). 

components of the polarization vector; thus polarizations 
which are perpendicular to the plane of the drawing appear 
as circles with central dots. Following the notation of 
Crampin (1981), the wave types are labelled as q P  for 
quasi-P, qSP for quasi-S with polarization within a 
symmetry plane, and qSR for quasi-S with polarization 
orthogonal to the symmetry plane. This notation is 
unambiguous for hexagonally symmetric media, for which a 
symmetry plane can be found for every point on the 
slowness surfaces. For such hexagonally symmetric media, 
qP-wave velocities vary approximately as a 2 8  and 48  
function of angle from the symmetry axis, qSP-waves vary 
as a 48  function, and qSR-waves vary as a 2 8  function 
(Crampin 1981). For transversely isotropic media (i.e. 
hexagonally symmetric with a vertical symmetry axis), qSP 
corresponds to qSV, while qSR corresponds to qSH. The 
full three-dimensional nature of the slowness sheets and 
wavefronF surfaces may be visualized by imagining the 
surfaces rotated about the x,-axis, the symmetry axis in 
these plots (i.e. the cracks are parallel to the x 2  - x g  plane). 

These aligned crack models may be appropriate foi 
modelling observations of crack-induced upper crusta 
anisotropy (e.g. Stephen, 1981, 1985; Booth et al. 1985 
Crampin & Booth 1985; Crampin et al. 1986; Shearer & 
Orcutt 1985, 1986). Leary, Li & Aki (1987) and Li, Leary & 
Aki (1987) recently used the Hudson theory and anisotropic 
ray tracing to model vertical seismic profile data showing 
fault zone' anisotropy. We consider four examples which 
illustrate the different kinds of anisotropy produced b? 
aligned cracks. In all cases, the isotropic host rock wac 
assumed to have properties ( (Y = 4.5 km s-', /3 = 
2.53 km s-l, u = 0.27, p = 2.8 Mg rK3) typical of the 
uppermost crust. Figs 1-4 show slowness sheets and 
wavefronts (i.e. group velocity) for each model. 

Wave polarization vectors are indicated by the arrows on 
the slowness sheet figures in order to illustrate the behaviout 
of the quasi-shear waves. Following Backus (1970), the 
arrnwc w e  drawn with rnniral tinr in nrdpr tn rhnw 1 1 1  thrpn 
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Model 3: Thin dry cracks 
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Figure 3. Slowness sheets, polarizations, and wavefronts for Model 
3 (thin dry cracks, d = 0.001, E = 0.1). 

1. Thin water-filled cracks 

The model material contains aligned, vertical, water-filled 
cracks with crack aspect ratio d = 0.001 and crack density 
E = 0.1. Density normalized elastic constants of the model 
are: a l l l l  = 20.04, u2222 = 20.22, alZl2 = 5.10, a2323 = 6.38, 
al12,=7.41 krn*s-'. This is similar to model HCSl of 
Crampin (1984), except slower velocities are assumed for 
the host rock. Slowness sheets and wave fronts are shown in 
Fig. 1. qP-wave anisotropy [defined as (V,,, - Vmin)/Vavg] is 
3.5 per cent; qSP- and qSR-wave anisotropy is 11.2 per 
cent. qP- and qSP-wave velocities vary as a 40  function of 
azimuth; qSR-wave velocities vary as a 20 function of 
azimuth. Notice that the qS-wave slowness sheets touch 
along the symmetry axis and cross at an angle of about 60" 
from the symmetry axis. The qSP-wave slowness sheet is 
flattened (but never concave outward) near 45", causing a 
sharp angle in the qSP wavefront. 

Model 4: High crack density 

I 

X1 slowness (s/km) 

I 

X1 velocity (km/s) 

Figure 4. Slowness sheets, polarizations, and wavefronts for Model 
4 (thin water-filled cracks, extremely anisotropic, d = 0.001, 
~ = 0 . 3 ) .  Notice the concave outward part of the qSP-wave 
slowness sheet which causes the cusps in the qSP wavefront. 

2. Thick water-filled cracks 

This model is identical to Model 1, except that the crack 
aspect ratio is assumed to be 0.1 rather than 0.001. This 
change from thin to thick cracks has a significant effect on 
the elastic properties of the material, as noted by Anderson, 
Minster & Cole (1974), Shearer & Orcutt (1986) and 
Crampin, McGonigle & Ando (1986). Elastic constants of 
the model are: al l l l  = 14.02, a2222 = 19.40, aIzl2 = 5.10, 
a2323 = 6.38, allZ2 = 5.18 km2 s2. Relative to Model 1, 
qSR-wave anisotropy is unaffected, but qP-wave anisotropy 
increases to 16.2 per .cent with a mainly 20 azimuthal 
dependence, and qSP-wave anisotropy decreases to 6.1 per 
cent. Quasi-shear wave phase and group velocities are 
nearly identical at angles up to 45" from the symmetry axis. 
Ray tracing using equation (4) proved to be numerically 
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Anisotropic gradient models unstable throughout this region, while equations (6) gave 
accurate results. 

3. Thindry cracks 

This model is identical to Model 1, except that the cracks 
are now assumed to be dry, rather than water-filled. Dry 
crack models differ significantly from wet crack models, as 
discussed by Crampin (1984). Elastic constants of the model 
are: allll = 11.91, a2222 = 19.11, alZl2 = 5.10, = 6.38, 
alIz2 = 4.40 km2 s-'. Relative to Model 1, qP-wave 
anisotropy increases to 24 per cent with a mainly 28 
azimuthal dependence, qSP-wave anisotropy decreases to 
4.3 per cent, and qSR-wave anisotropy is unaffected. 
qSR-waves are faster than qSP-waves at all angles except 
where the slowness sheets touch along the symmetry axis. 
Generally, however, the qS-waves in this model are similar 
to those in Model 2, the main differences being in the 
qP-waves. The obvious fourth combination, thick dry 
cracks, does not differ significantly from the thin dry crack 
model. 

4. Thin water-filled cracks (extremely anisotropic) 

This model is identical to Model 1, except that the crack 
density is assumed to be 0.3 rather than 0.1. Although 
such a large crack density may exceed the valid range of 
the Hudson (1980) theory, this model is included to illus- 
trate some of the unusual properties of extremely aniso- 
tropic models. Elastic constants of the model are: ull l l  = 

7.26 km2 s-'. qP-wave anisotropy is 15 per cent with a 48 
azimuthal dependence, qSP-wave anisotropy is 30 per cent 
with a 48 dependence, and qSR-wave anisotropy is 29 per 
cent with a 28 dependence. The qSP-wave slowness sheet is 
concave outward at angles between about 30" and 60" from 
the symmetry axis, causing cusps in the wave front, and a 
multi-valued group velocity function. These cusps are 
associated with many unusual wave propagation features 
(see, for example, Crampin 1981). They begin to occur for 
the Hudson (1980) model of aligned cracks at crack densities 
of about 0.13. For hexagonally symmetric models, they can 
only occur for qSP-waves and never for qSR-waves, since it 
is the 48 angle dependence which causes them. The 
qP-wave slowness sheet is never concave outward (for a 
simple proof, see Payton 1983). 

19.63, a2222 = 20.16, ~ 1 2 1 2  = 3.48, a2323 = 6.38, a1122 = 

ANISOTROPY DEPTH SCALING 

For simplicity, we assume that the above models represent 
elastic properties at the surface of the crust, and that these 
properties change only with depth. Further, we assume that 
the elastic properties vary only by a simple scalar factor, so 
that the elements of the elastic tensor are always in the same 
proportion to each other. This has great advantages in 
understanding the results of the ray tracing, since the figures 
describing the models (1-4) are applicable at any depth, if 
the appropriate scaling factor is applied. Finally, we assume 
that the elastic tensor varies quadratically with depth, so 
that the corresponding velocity gradient is linear (Shearer & 
Chapman 1988). In this case, we can obtain the elastic 

0.0 

0.5 

1 .o 
n 

Y 
E 

5 
W 

1.5 
a 
(u 
D 
2.0 

2.5 

3.0 
2 3 4 5 6 7 

Velocity (krn/s) 
Figure 5. Maximum and minimum qP- and qb-wave velocities as a 
function of depth for the Hudson (1980) crack theory (solid lines) 
and a simple scaling of the elastic tensor (dashed lines). A linear 
velocity gradient in the host matrix is assumed for the crack model. 

tensor, ajik,, at a particular depth from 

aijkr(2) = aijkr(zo)[1 + a ' ( z  - Z 0 ) / ~ O l 2 ,  (7) 
where a. is the P-wave velocity at depth z,, and a' is the 
effective P-wave velocity gradient. For all examples in this 
paper we assume a' = 1 s-', a relatively steep velocity 
gradient which may be appropriate for the uppermost crust. 
We define a, as the P-wave velocity from the isotropic part 
of the elastic tensor (see Backus 1982), but the simpler 
method of averaging the minimum and maximum velocities 
would give very similar results. 

Although this form of the model depth dependence was 
largely chosen for convenience, it may also be a reasonable 
approximation to upper crustal anisotropy in the earth. Fig. 
5 compares Model 2 qP- and qS-wave velocities vs. depth 
obtained from equation (7) with those calculated for the 
Hudson (1980) aligned crack model, assuming a linear 
velocity gradient in the host matrix. Both models predict an 
increase in anisotropy with depth, although the equation (7) 
model predicts slightly less qP-wave anisotropy and slightly 
lower qS-wave velocities. It is doubtful whether these 
differences could be distinguished with real data considering 
the often noisy nature of upper crustal seismic observations. 

RAY TRACING RESULTS 

The depth scaling of the anisotropy in these examples makes 
it easy to correlate the ray tracing results with properties of 
the model slowness sheets shown in Figs 1-4. This is 
illustrated in Fig. 6 which compares an individual qSR-wave 
ray path with a vertical cross-section of the appropriate 
slowness sheet from Model 1. The ray is initially defined 
with a slowness vector azimuth of 45" from the symmetry 
axis at an angle of 45" from vertical. A cross-section of the 
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polarizations, not group velocity vectors). Notice that this is 
generally different from the slowness vector direction. As 
the ray moves downward, the model velocities increase, 
causing the slowness surface shown in Fig. 6a to shrink. 
Because horizontal slowness must be conserved, this will 
cause the ray path to move up along the slowness surface 
from point A. For the examples in the paper, the elastic 
constants vary with depth by a scalar factor, so the shape of 
the slowness curve remains the same. Thus, a convenient 
way of visualizing the ray path along the slowness sheet is to 
imagine that the slowness sheet is fixed in size and shape, 
but that the horizontal slowness of the ray increases with 
depth. For the particular depth scaling of the elastic tensor 
described by equation (7), the ray path is exactly the same 
shape as the corresponding slowness sheet rotated by 90" 
(Shearer & Chapman 1988). 

As we move up along the slowness sheet from point A, 
the ray direction becomes more shallow, until at point B, 
the turning point, the ray is travelling horizontally. For this 
example, the vertical slowness is zero at this point, but this 
will not generally be true for other models (with 
non-horizontal symmetry axes). Using similar arguments, 
we can trace the ray along the slowness sheet back up to the 
surface at point C. The ray is vertically polarized at the 
turning point, but twists out of the plane of the cross-section 
at other points along the ray path. 

Figure 7 compares this qSR ray path with q P  and qSP ray 
paths for the same model and slowness direction. The faster 
q P  velocities can be seen in the greater spacing of points 
along its ray path. q P  polarizations deviate slightly from the 
ray direction, but not enough to be visible in Fig. 7. qSP and 
qSR polarizations both twist in a counter-clockwise direction 
continuously along the ray path, remaining orthogonal to 

Range (km) 
b) 
Figure 6. A cross-section of a qSR-wave ray path (b) compared 
with the corresponding vertical cross-section of the qSR-wave 
slowness sheet (a). Points A ,  B and C along the ray path are 
associated with corresponding points on the slowness sheet. Arrows 
are shown at 0.1 s intervals along the ray path, except for the final 
point at the surface. 

resulting ray path is shown in Fig. 6b. Arrows indicate the 
wave polarization and are spaced at 0.1 s intervals. The ray 
turns at a depth of about 2 km and arrives at the surface at a 
range of about 9 km. Fig. 6a shows a vertical cross-section 
(45" from the symmetry axis) of the qSR-wave slowness 
surface for Model 1 at the surface. 

Points along the ray path may be correlated with the 
slowness sheet as follows: the point labelled A shows the 
position of the source. The slowness vector points down at 
an angle of 45". The group velocity (ray direction) at this 
point is indicated by the normal to the slowness surface 
(remember that the arrows in Fig. 6 indicate wave 

I .  I ,  I .  I ,  3 .  I .  0 .  I e 1 ,  . I  
0 1 2 3 4 5 6 7 8 9  

Range (km) 

Figure 7. A comparison of qP-, qSP- and qSR-wave ray paths and 
polarizations. Arrows are shown at 0.1 s intervals along the ray 
path, except for the final surface points. qSP- and qSR-wave 
polarizations twist significantly along the ray path. 
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very rapidly near the turning point for rays close to the x ,  
symmetry axis. Notice that the qS-wave polarizations 
change abruptly by 180" at the turning point for the rays 
which turn along the symmetry axis. This results from the 
singularity in the polarizations at the symmetry axis, the 
implications of which are discussed in Paper 11. 

In order to predict the polarization and travel-time 
anomalies which might be observed at the surface, we 
calculated ray paths at increments between 0" to 90" in 
azimuth and 45" to 80" in incidence angle for each model. 
The results are shown for each of the four models in Figs 
9-12. Because of the symmetry of the models, the results at 
other azimuths (i.e. 90" to 360") are mirror images of these 
plots. The polarization of each upcoming ray at the receiver 
is indicated by the arrows, with each arrow representing an 
entire ray path. This polarization does not necessarily 

each other. This twisting of the qS-wave polarizations 
indicates that there will be coupling between the shear 
waves (see Paper 11): for these examples it is assumed that 
the frequencies are sufficiently high that coupling is not 
important. 

Figure 8 shows a plan view of qP, qSP, and qSR ray paths 
for Model 1 at azimuths of 0" to 90" (5" spacing) from the x1 
symmetry axis. Points are shown every 0.1 s along the ray 
paths. qSP rays are concentrated near an azimuth of 45", 
reflecting the flattening of the qSP slowness surface (see Fig. 
1). Close examination of the ray paths reveals that they are 
slightly curved, and not generally confined to a vertical 
source-receiver plane, despite the fact that the model 
parameters vary only with depth. This deviation of the ray 
path from the source-receiver plane was discussed by 
Shearer & Orcutt (1985). qSP and qSR polarizations change 

0 1 2 3 4 5 6 7 8 9  
a) X1 range (krn) 

Model 1 qSI glz 2 --o 

C) X1 range (km) 
Fire 8. Ray paths for Model 1 at azimuths between 0" and 90" from the symmetry axis ( x , ) .  Each ray leaves the source at a phase angle of 
45" from vertical. Arrows are shown at 0.1 s intervals along the ray path, except for the final points at the surface. Notice the bunching of the 
qSP-wave rays near an azimuth of 40" from the symmetry axis; this results from the flattened part of the Model 1 qSP slowness surface (see 
Fig. 1).  Also notice the singularity in the qSP- and qSR-wave polarizations at 4.5 km range along the x ,  symmetry axis. 
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Figure 9. Surface polarizations for Model 1 (thin, water-filled cracks). Each arrow represents the end point of an entire ray path. Rays are 
evenly spaced between 0" and 90" in phase azimuth and 45" and 80" in phase angle from vertical. (d) contours the time delay between the qSP- 
and qSR-wave arrivals (i.e. the shear-wave splitting). Positive times correspond to points at which qS.7 arrives first, negative times to points at 
which qSP arrives first. 

represent the actual particle motion at the surface, because 
of the complication of surface-reflected phases (as discussed 
in Booth & Crampin 1985). For each model, qP-, qSP-, and 
qSR-waves are shown by Figs a, b, and c, respectively. Fig. 
d shows the travel-time difference between the quasi-shear 
wave arrivals (the shear-wave splitting) in 0.1 s contours. 

For each of the models shown, qP-wave polarization 
anomalies are small (as discussed by Crampin, Stephen & 
McGonigle 1982). qSP and qSR polarizations vary with ray 
azimuth and incidence angle. Near the n, symmetry axis, 
qSR polarizations correspond to SH and qSP polarizations 
correspond to SV, but this relationship is reversed at 
azimuths near 90" away from the symmetry axis. At 
intermediate azimuths, the quasi-shear wave polarizations 
are skewed relative to the ray path and correspond to 
neither SH- or SV-waves. 

Figure 9 shows ray tracing results for Model 1 (thin wet 
cracks). The arrivals are generally evenly spaced except for 
the concentration of qSP-wave arrivals at azimuths near 45". 
As previously discussed, this is a result of the flattening of 
the qSP slowness sheet at these angles, which causes nearly 
identical group velocity (ray) directions for a range of 
slowness directions. Thus, higher qSP amplitudes should be 
expected at this azimuth, although of course these 
amplitudes also depend upon the radiation pattern of the 
source. If the source were in an overlying isotropic layer and 
the energy equally distributed in angle, the focusing shown 
in Fig. 9b is directly applicable. Shear-wave splitting of up to 
0.37 s is shown in Fig. 9d. qSR-waves arrive first at azimuths 
between about 50" and 90" from the symmetry axis, with 
qSP-waves arriving first at smaller azimuths. The time 
separation is generally greater when the qSR-waves arrive 
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Figure 10. Surface polarizations for Model 2 (thick, water-filled cracks). See Fig. 9 for plot description. 

first with the maximum splitting occurring at 90" from the 
symmetry axis. A smaller maxima occurs at an azimuth of 
about 35", for which the qSP-wave arrives first. 

Figure 10 shows the predicted polarization and shear- 
wave splitting pattern for Model 2 (thick wet cracks). 
Relative to Fig. 9, the main differences are that the focusing 
of the qSP-waves is reduced, and the quasi-shear waves 
arrive at nearly the same time at azimuths between 0" and 
about 30" to 40" (note the range dependence). If the time 
separation between the qS-waves is less than the dominant 
period of the data, the particle motion would be elliptical at 
these azimuths, with distinct shear-wave arrivals apparent 
only at greater azimuths. The predicted polarizations and 
shear-wave splitting for Model 3 (thin dry cracks), shown in 
Fig. 11, are very similar to the Model 2 results, the main 
difference being in the qP-wave travel times. 

Figure 12 shows a more interesting example from Model 
4, the extremely anisotropic model. In this case, rays are 

shown at increments of 2.5" in azimuth and 7" in incidence 
angle in order to properly illustrate the loops in the 
qSP-wave arrivals. These loops result from the concave 
outward part of the qSP-wave slowness sheet for this model, 
and are associated with the cusps in the wavefront (see Fig. 
4). At azimuths between about 30" and 50", there is a 
triplication in the qSP-wave arrivals, in which three different 
branches can be seen. Amplitudes throughout this region 
should be enhanced, with amplitude peaks associated with 
the caustics at azimuths of about 30" and 50". Arrivals on the 
retrograde branch between these caustics will be Hilbert 
transformed relative to the forward branch arrivals (Duff 
1960; Singh & Chapman 1986). The polarizations differ 
somewhat between the branches, so the observed particle 
motions in this region will be very complicated. For this 
reason, a shear-wave splitting plot is not shown for this 
model. 

These plots are examples of the kinds of polarization 
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anomalies which might be expected for a source and 
receiver above an anisotropic layer in which velocities 
increase sharply with depth. Such models may be 
appropriate for crack-induced anisotropy in the uppermost 
crust, and are more realistic than simple calculations for a 
homogeneous anisotropic layer [used by Crampin & Booth, 
(1985) and Stephen (1985) to model S-wave splitting 
observations]. This ray tracing technique (i.e. equations 6) 
could easily be generalized to include buried sources or 
receivers, and overlying or underlying isotropic layers. In 
the case of models with discontinuities, reflection and 
transmission coefficients could be calculated in order to 
make first-order estimates of ray amplitudes (as suggested 
by Stephen 1985) and properly account for any free surface 
effects (as discussed by Booth & Crampin 1985). However, 
because of coupling between the quasi-shear waves, the 
shear-wave polarizations which we have shown here will 
only be accurate at relatively high frequency (see Paper 11). 

Figure 11. Surface polarizations for Model 3 (thin, dry cracks). See Fig. 9 for plot description. 

TRIPLE TURNING POINT EXAMPLE 

Ray paths in anisotropic material can sometimes appear 
strange, if one is used to seeing ray paths in isotropic 
material. As an example, Fig. 13b shows a ray path for 
Model 4, with the model rotated 48" about the x2  axis. This 
would correspond to an aligned crack model in which the 
cracks dip at 42". Properties of the model vary only with 
depth. The qSP-wave ray path shown is for a source 
slowness vector at an incidence angle of 20" and at the same 
azimuth as the symmetry axis. For comparison, a 
cross-section of the qSP-wave slowness surface is shown in 
Fig. 13a. Notice that the slowness sheet is concave 
outward along both the horizontal and vertical axes. 
Because we assumed that the anisotropic velocity gradient 
can be described by equation (7), the slowness sheet is 
exactly the same shape as the ray path rotated by 90" 
(Shearer & Chapman 1988). 
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Fire 12. Surface polarizations for Model 4 (extremely anisotropic model of thin, water-filled cracks). See Fig. 9 for plot description. Because 
of the multiple qSP-wave arrivals, no shear-wave splitting plot is shown. 

Point A corresponds to the source position on the ray 
path. Although the horizontal slowness is positive at this 
point, the group velocity vector points slightly backwards. 
Thus, the initial part of the ray path points away from the 
receiver! At point B, the ray is pointing straight down. At 
point C, the ray slowness vector moves through the 
direction of the symmetry axis of anisotropy and the ray 
polarization changes by 180" (this phase shift is predicted by 
ray theory at infinitely high frequency but will not occur at 
finite frequencies, see Paper 11). At point D, the group 
velocity direction is horizontal, even though the vertical 
slowness is still negative. The ray turns at this point and 
begins going up. However, at point E, the ray turns again 
and begins going down. At point F, the ray turns a third 
time and goes up. The slowness corresponding to point G is 
not on the symmetry axis, so the polarization does not 
change at this point. At point H, the ray is going straight up. 

Finally, at point I, the ray arrives at the surface, with the 
final part of the ray path pointing slightly back toward the 
source. Each of the three turning points (D,E, and F) 
represents a different phase velocity direction and 
polarization, but none of the three points corresponds to 
zero vertical slowness. Garmany (1988a, b) has investigated 
the wave solution at such turning points in anisotropic 
media. 

In an isotropic medium, such complicated ray paths could 
result from lateral heterogeneity. In this case, however, the 
material is laterally homogeneous and the complications 
arise purely from the anisotropy. Multiple turning point 
phenomena such as this occur when a concave outward part 
of the slowness surface intersects the horizontal plane. 
Concave outward slowness surfaces can only occur for 
quasi-shear waves, and only for very anisotropic materials. 

Another interesting aspect of this example is illustrated in 
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Figure W. An example of a ray with three turning points. The ray 
path and polarizations are shown in (b), while the corresponding 
cross-section of the slowness sheet is shown in (a). Arrows are at 
0.2 s intervals along the ray path. Points A to I along the ray path 
correspond with the points indicated on the slowness surface. 

Fig. 14, which plots the qP, qSP and qSR slowness sheets 
along the same cross-section as Fig. 13a. The plot shows 
the real and imaginary parts of the six eigenvalues (the 
vertical slownesses) for the system as a function of 
horizontal slowness. As noted by Keith & Crampin (1977) 
and Garmany (1983), these eigenvalues are either purely 
real or in complex conjugate pairs. At small values of 
horizontal slowness (p < 0.24 s km-I), the six solutions are 
all real and correspond to upgoing and downgoing 
qP-, qSP- and qSR-waves. At larger values of p, the waves 
become evanescent and the eigenvalues are complex with 
increasing imaginary parts. This corresponds to the region 
below the ray turning point, in which amplitudes decay 
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Figure 14. A cross-section of the qP, qSP and qSR slowness sheets 
for the triple turning point example shown in Fig. 13, plotting 
vertical slowness as a function of horizontal slowness. Real parts are 
shown as solid lines, imaginary parts as dashed lines. At small 
values of horizontal slowness, there are six purely real solutions and 
the slowness surfaces shown are solutions to equation (2). These 
represent upgoing and downgoing travelling waves with oscillatory 
behaviour. At large values of horizontal slowness, the waves 
become evanescent and the solutions occur in complex conjugate 
pairs. These are waves below their turning points which are 
decaying exponentially with depth. 

exponentially with depth. The intriguing aspect of this 
example is that there is an evanescent region above the 
middle qSP-wave turning point, which is linked to the 
evanescent region below the qP-wave turning point. At 
p = 0.41 s km-’, well past the qP-wave turning point, the 
evanescent qP-wave solution has disappeared and there are 
six real solutions, corresponding to four qSP-waves and two 
qSR-waves. This diagram indicates that energy may ‘tunnel’ 
through this evanescent region and cause coupling between 
q P  and qSP. 

CONCLUSIONS 

Velocity gradients in anisotropic media lead to complica- 
tions in the analysis of anisotropic wave propagation. The 
ray equations are particularly useful for studying these 
phenomena, and can be used to predict various amplitude 
and polarization anomalies and patterns of shear-wave 
splitting. Strong anisotropy can cause unusual effects, such 
as ray paths which have three turning points in laterally 
homogeneous models. Perhaps the most important result of 
this work is that quasi-shear wave polarizations typically 
twist along ray paths within gradients in anisotropic media. 
The twisting results in frequency-dependent coupling 
between the qS-waves, which is especially strong near 
singularities in the’qS-wave polarizations. Paper I1 discusses 
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APPENDIX: EIGENSOLUTIONS FOR 
HEXAGONALLY SYMMETRIC MEDIA 

The eigenvalues (phase velocities squared) and eigenvectors 
(polarizations) for anisotropic material with hexagonal 
symmetry may be obtained from relatively simple 
expressions. A short derivation of these expressions follows, 
using notation from Musgrave (1970) and Cervenq (1972). 

Without loss of generality, we can choose reference axes 
such that the symmetry axis is the x 3  axis. For hexagonal 
symmetry, we have the following density normalized elastic 
constants: 
a1111 = a2222 

a3333 

a1122 

a1133 = a2233 

a1313 = a2323 

a1212 = &llll - a1122). 

(aijk,Bj@, - u26ik)& = 0, 

(Al l  

(‘42) 

We wish to solve the characteristic equation 

where p is the unit slowness direction, g is the polarization 
unit vector and u is the phase velocity. Following Musgrave 
(1970), let 

c = al l l l  - al122 - 202323 

g = $(a1111 + a1122) 

H = u2 - a2323. 

a = allll - a2323 

d = a1133 + a2323 

h = a3333 - %323 

(A31 
Substituting (Al) into (A2) and using (A3), we obtain 

(‘44) 

P:U + $@$c - H BlF2g B l h d  
B 1 B2g $0:~ +@:a - H B2B3d 
BlB3d @2@3d fizh - H .(z)=( i). 

Now let r n 2 = p : + &  and n2=&. Factorizing (A4), we 
obtain expressions for the three eigenvalues 

H,,, = +m2c (A51 
Hqp= +{rn2a + n2h + [(rn’a + n2h)2 - 4n2rn2(ah - d’)]”’} 

(‘46) 

Hqsp = ${rn2a + n2h - [(rn”a +n2h)2 - 4n2rn2(ah - d2)I1”}, 
(A7) 

where, following the notation of Crampin (1981), q P  
indicates the quasi-compressional wave, qSP indicates the 
quasi-shear wave with polarization within the symmetry 
plane, and qSR indicates the quasi-shear wave with 
polarization orthogonal to the symmetry plane. In the case 
of a vertical symmetry axis (commonly referred to as 
transversely isotropic), qSP and qSR are equivalent to qSV 
and qSH, respectively. 

Corresponding phase velocities may be obtained from 
(A3). Polarizations are obtained by substituting the 
appropriate expression for H into (A4). 

qSR polarization 

g3 = 0. 

qP and qSP polarization 

Define 

k, = H -n2h 
k, = rnnd. 

Then for p 3  > 0, 

At rn = 0, the q P  polarization is (O,O,l), while the qSP and 
qSR polarizations are undefined within the plane perpen- 
dicular to (O,O,l). At n =0, then rn = 1 and the q P  
polarization is (B1, &, 0), the qSR polarization is 
(-p2, PI ,  0), and the qSP polarization is (0,OJ). When 
b3 < 0, care must be taken to ensure polarization continuity 
at f i3  = 0. This can be done for qP-waves by switching the 
sign of g3, and for qSP-waves by switching the signs of 8, 
and g2 in the above expressions. 

Equations (A8) and (A9) are equivalent to similar 
expressions in Musgrave (1970) and Hanyga (1986), but are 
more numerically stable near n =O.  Also note the 
typographical error in Hanyga (1986) equation (G15); the 
C’ should be A‘. With a suitable rotation of coordinates, 
these expressions can be used to find the phase velocity and 
polarization for a hexagonally symmetric material with any 
symmetry axis orientation. 


