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Abstract Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in
the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals,
together with back-projection analysis, led Fan and Shearer (2016a, https://doi.org/10.1002/2016GL067785)
to conclude that they originated from early aftershock(s), located ∼150 km northeast of the mainshock
and landward of the trench. However, recently, Yue et al. (2017, https://doi.org/10.1002/2017GL073254)
argued that the anomalous arrivals are more likely water reverberations from the mainshock, based
mostly on empirical Green’s function analysis of a M6 earthquake near the mainshock and a water phase
synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes
within 100 km of the Mw 7.2 earthquake, including the empirical Green’s function event analyzed in Yue
et al. (2017, https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5
reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (2016a,
https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the
anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this
energy is more likely an early aftershock rather than delayed and displaced water reverberations from
the mainshock.

1. Introduction

Teleseismic P wave back-projection has become an important tool in resolving large earthquake ruptures,
including complications due to nonuniform rupture velocities and multiple subevents (e.g., Allmann &
Shearer, 2007; Ishii et al., 2005; Kiser & Ishii, 2012; Koper et al., 2012; Nissen et al., 2016; Okuwaki et al., 2014;
Satriano et al., 2012; Walker et al., 2005; Wang, Mori, et al., 2016; Yagi et al., 2012). Recently, it has also been
used to detect and locate early aftershocks that may be obscured by the mainshock coda (e.g., D’Amico et al.,
2010; Fan & Shearer, 2016b; Kiser & Ishii, 2013; Wang, Kawakatsu, et al., 2016; Yao et al., 2012). Back-projection is
generally applied to data at epicentral distances from 30∘ to 90∘, where the P wave Green’s function is relatively
uncontaminated by mantle triplications, such that simple time corrections and stacking methods can be used
to extract coherent signals. The simplicity of the back-projection method assures its robustness; for exam-
ple, different groups often obtain similar back-projection source models despite using different data sets and
stacking approaches (e.g., Fan & Shearer, 2015; Grandin et al., 2015; Wang & Mori, 2016; Yagi & Okuwaki, 2015;
Zhang et al., 2016). However, back-projection can still suffer from imaging artifacts, depending upon the data
coverage and quality, as well as details of the data processing (e.g., Kiser & Ishii, 2011; Meng et al., 2012; Xu et al.,
2009). In some cases, depth phases or water reverberations may cause coherent radiation, contaminating the
back-projection images (e.g., Xu et al., 2009; Yue et al., 2017). Thus, evaluating the resolution and robustness
of back-projection results is important and can be done using synthetic experiments (e.g., Koper et al., 2012)
or back-projecting smaller earthquakes near the mainshock rupture to estimate the imaging kernel for a point
source (e.g., Wang & Mori, 2016).

Fan and Shearer (2016a) analyzed the 2012 Mw 7.2 Sumatra earthquake with back projection and imaged
coherent energy originating about ∼150 km away from the mainshock epicenter and ∼50 s later. This energy
can be seen directly in the P waveforms and forms a series of arrivals, with azimuthal variations consistent
with the back-projection-inferred location (see Figure 3 of Fan & Shearer, 2016a). The results were validated
with separate back-projection imaging using both European stations and the Japanese Hi-net array, as well
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Figure 1. The 10 January 2012 Mw 7.2 mainshock, three M6 seaward empirical Green’s function events, and three M5.5
landward empirical Green’s function events.

as synthetic tests to assess resolution and the effect of depth phases. In addition, stacked P wave velocity spec-
tra do not show expected harmonic frequencies, which are often taken as evidence for water reverberation
phases (e.g., Chu et al., 2011; Zhan et al., 2014).

Recently, Yue et al. (2017) examined the anomalous arrivals in the P wave trains of the 2012 Mw 7.2 Suma-
tra earthquake and concluded that they probably originated from mainshock water reverberations rather
than from an early aftershock, based on both observational details and a 2-D synthetic simulation. A key part
of their argument involves a comparison between the mainshock and a nearby M6 earthquake, which they
claim contains anomalous late P wave arrivals similar in character to those seen for the mainshock, and yields
back-projection images with energy near the location of the early aftershock(s) imaged by Fan and Shearer
(2016a) for the mainshock. If their interpretation is correct, it raises the possibility that other early aftershocks
detected by back projection (e.g., Fan & Shearer, 2016b; Kiser & Ishii, 2013; Lay et al., 2010), which have simi-
lar subduction zone geometries with respect to their mainshocks, might also be water reverberation artifacts,
with potential implications for estimates of the early aftershock triggering rate. Thus, this is an important issue
to resolve.

Here we study the Mw 7.2 Sumatra earthquake wave trains in more detail, by examining three calibration
(EGF, empirical Green’s function) events near the mainshock, including the event analyzed by Yue et al. (2017),
as well as three additional EGF events near the location of our previously inferred early aftershock (Figure 1).
Our results indicate that the oscillatory character of the anomalous mainshock arrivals suggests water rever-
berations, but that the data are more consistent with water reverberations excited by an early aftershock
located landward of the trench, than with delayed and displaced reverberations from the mainshock.

2. P Waveform Analysis of M6 EGF Events Near the Mainshock

M6 earthquakes are often approximated as point sources when observed at teleseismic distances and their
waveforms are used as EGFs for larger nearby earthquakes in order to distinguish between source and path
contributions to the complex waveforms recorded for the larger event (e.g., Denolle et al., 2015; Wei et al.,
2013). Here we analyze three such EGF events within 100 km of the 2012 Mw 7.2 Sumatra mainshock, including
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Figure 2. Aligned waveforms of the 2012 Mw 7.2 mainshock and three M6 empirical Green’s function events within 100 km epicentral distance. (a–d) The
first row shows the earthquake focal mechanisms and the stations used for waveform alignment. The lower-hemisphere P wave polarities of the stations are
plotted as red (negative) and blue (positive) dots. (e–f ) The second row shows the aligned waveforms. The red ticks show the nodal plane strikes and their 180∘
increments. The third row shows azimuthal bin stacked waveforms (within each 4∘). The 2007 M6.2 event (second column) is the calibration event in Yue et al.
(2017). The traces are band-pass filtered at 0.02 to 0.5 Hz with a second-order Butterworth filter before the alignment.

the 4 October 2007 event examined by Yue et al. (2017) (see Figure 1). To compare P waveforms among these
events as a function of station azimuth, we follow the same data processing procedure described in Yue et al.
(2017) to align the first 125 s of the P waves of the 2012 Mw 7.2 Sumatra mainshock (Figure 2c) and the three
EGF events (see Figure 2).

We download P wave velocity records of the events from all the stations registered at the International Fed-
eration of Digital Seismograph Networks (FDSN). We apply a 0.02 to 0.5 Hz second-order Butterworth filter,
as suggested in Yue et al. (2017). Records with signal-to-noise ratios (SNR) less than 1 are removed. The SNR
is defined as the root-mean-square (RMS) amplitude ratio from time windows 10 s before and 10 s after the
theoretical P wave arrival obtained from IASP91 (Kennett & Engdahl, 1991). The traces are then aligned using
multichannel cross correlation with a time window from −1 to 4 s relative to the theoretical P arrivals (Houser
et al., 2008). Polarity flips are allowed during cross correlation to accommodate the varying radiation pat-
terns at different azimuths. Aligned records lacking identifiable P wave onsets are then removed by visual
inspection. In summary, we analyze 242 records from the Mw 7.2 mainshock, and 151, 260, and 173 records
for the three EGF events, respectively (19 April 2006 Mw 6.2, 4 October 2007 Mw 6.2, and 20 April 2012 Mw 5.9).
The aligned records are self-scaled by their maximum amplitude for plotting in Figure 2.

The aligned waveforms of the mainshock show clear coherent phases after 50 s, as discussed in Fan and
Shearer (2016a), spanning the entire azimuthal range (Figure 2c). To make these arrivals more visible, we stack
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the traces within 4∘ azimuthal bins, which enhances the coherence of the phases showing cosine-shaped
time variations (Figure 2g). These strong late arrivals are not very apparent in the EGF event wave trains. For
the 19 April 2006 Mw 6.2 EGF, some coherent phases after 30 s from 290∘ to 360∘ can be identified (Figure 2e)
that appear similar to those seen for the mainshock, although lower in amplitude. Another possible coher-
ent episode appears around 50 s at ∼19∘. However, the noisy records from ∼100∘ to ∼300∘ make it difficult
to identify any continuity with azimuth for these features. Unlike Yue et al. (2017), we do not observe a cor-
relation between the mainshock waveforms and those for the 4 October 2007 Mw 6.2 EGF event. Note that
some coherent phases after 30 s around 15∘ azimuth (one of the nodal planes) can be identified for this event
(Figure 2f ), but the time variation of the phases from 0∘ to 30∘ is opposite to the pattern proposed in Figure 2
of Yue et al. (2017). No azimuthally coherent phases can be identified for the 20 April 2012 Mw 5.9 EGF event
(Figure 2h). Overall, with the possible exception of some of the records from the 19 April 2006 EGF event
(more about this later), the evidence for similarities between the mainshock and EGF waveforms at 50 to 100
s is weak, suggesting that the anomalous 2012 Mw 7.2 mainshock arrivals are not a common feature of events
in this region.

3. P Waveform Analysis of M5.5 Landward EGF Events

Yue et al. (2017) make a good case that the anomalous mainshock arrivals at 50 to 100 s have the character-
istic signature of water reverberations, because they exhibit multiple coherent phases separated by constant
intervals, that is, waveform “ringing,” which can be used to identify water phases (e.g., Chu et al., 2011).
However, water reverberation phases could also be generated by an early aftershock, rather than the main-
shock. To gain some insight as to the expected waveform appearance of possible early aftershocks, we
perform waveform analysis for three M5.5 reverse-faulting EGF events that are close to the observed landward
radiator in Fan & Shearer, 2016a (Figure 1). These M5.5 earthquakes share very similar focal mechanisms, sug-
gesting they were likely hosted by the same fault (Figure 1), and their relatively frequent occurrence suggests
that the hosting fault is seismically active. Because of the spatial and temporal correlation of the landward radi-
ator with passing surface waves from the mainshock, Fan and Shearer (2016a) suggested that the observed
landward radiator is a dynamically triggered early aftershock(s), which may share a similar focal mechanism
with the M5.5 reverse-faulting earthquakes.

We align the M5.5 reverse-faulting earthquake waveforms with the same procedure in section 2, and then
apply relative time offsets calculated from the epicentral distances between the Mw 7.2 mainshock and
each reverse-faulting EGF, respectively. In addition, we apply an extra 50-s delay to the records to compare
them with a possible dynamically triggered aftershock of the Mw 7.2 event. As shown in Figure 3, waveform
arrivals from the three M5.5 EGF events appear very similar to the coherent phases seen after 50 s during the
10 January 2012 Mw 7.2 mainshock. Multiple coherent phases at almost constant 10-s intervals are observed
in all three M5.5 EGF events lasting for about 50 s. These phases are not depth phases (pP or sP), which
would consecutively follow the initial P wave arrivals within ∼10 s for these three EGF events (Figure S1 in the
supporting information). The long-lasting pattern of these multiple coherent phases suggests they are water
reverberations (Figure 3), which were excited by the reverse-faulting M5.5 EGF events. It is worth noting that
the 20 April 2012 Mw 5.8 earthquakes are a doublet with a 10-min delay. The 20b April 2012 Mw 5.8 is within
the 20a April 2012 Mw 5.8 coda, but still excited clear coherent multiple phases for about 50 s (Figures 3c and
3f). These observations indicate that landward reverse-faulting M5.5 earthquakes in this region commonly
produce water reverberations in their P wave trains (Figure 3), thus an early aftershock of the 10 January
2012 Mw 7.2 mainshock in the region would also likely produce water reverberations and waveforms similar
to those observed in Figures 2c and 2g. These results indicate that a single early aftershock could produce
the extended arrivals; the multiple early aftershocks we originally proposed in Fan and Shearer (2016a) are
not necessary.

4. P Wave Back-Projection of M6 EGF Events

We follow the back-projection procedures described in Fan and Shearer (2015) to image the mainshock
and three M6 EGF earthquakes. A standard time domain back-projection approach is implemented for a
0.05–0.3-Hz frequency band (Figures 4 and S2). Similar to the waveform alignments in section 2, we first
empirically align the initial P wave records sharing the same Global Centroid Moment Tensor (GCMT) polar-
ity to neutralize 3-D velocity structure influences, assuming that the first few seconds of radiation is excited
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Figure 3. Aligned waveforms of the three M5.5 reverse-faulting empirical Green’s function events landward of the
trench. Waveforms are aligned and shifted with respect to the 10 January 2012 Mw 7.2 earthquake epicenter. An extra
50-s delay is imposed to validate the observed dynamically triggered aftershock occurring time. The 2012 Mw 7.2
mainshock strikes are labeled for reference. The legends are similar to Figure 2. Depth phases are labeled in Figure S2.
The traces are band-pass filtered at 0.02 to 0.5 Hz with a second-order Butterworth filter before the alignment.

at the hypocenter (Houser et al., 2008). We then shift the records with relative time offsets calculated with
the 1-D IASP91 velocity model (Kennett & Engdahl, 1991) at different locations. Finally, we stack the shifted
records to image coherent seismic radiators with Nth-root stacking (McFadden et al., 1986; Rost & Thomas,
2002; Xu et al., 2009). Nth-root stacking (N = 4) is a nonlinear stacking approach, which sharpens coher-
ent signals and suppresses noise at the cost of losing absolute amplitude information. During stacking, each
record is self-normalized to adjust for radiation pattern differences and is inversely weighted by the number of
contributing stations within 5∘ to avoid biasing by a single densely instrumented region. We also implement
linear stacking with the same procedure, including self-normalization, to estimate relative radiation strength
for the same earthquake at different times (Ishii et al., 2005). No postsmoothing or postprocessing is applied
to the back-projection images.

In practice, we first grid possible sources over 600 km in latitude and longitude at 10-km spacing. For the three
strike-slip events (19 April 2006 Mw 6.2, 4 October 2007 Mw 6.2, and 10 January 2012 Mw 7.2), only stations
sharing the same polarities are used to ensure the robustness of the resolved back-projection images (Figure 4
inserts). Radiation of the 20 April 2012 Mw 5.9 reverse-faulting EGF event is evaluated with globally distributed
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Figure 4. Integrated back-projection images for the first 100 s of the four seaward earthquakes. The color contours are
above 30%. The inserts show the stations used for imaging and their lower-hemisphere P wave polarities. Only the 10
January 2012 Mw 7.2 earthquake back-projection image suggests extra energy release on the other side of the trench.
Integrated back-projection images with color contours from 0% to 100% can be seen in Figure S1.

stations to maximize the possibility of imaging water-reverberation-induced coherent phases, as they would
share the same polarity and have about the same strength at different azimuths. The 20 April 2012 Mw 5.9
reverse-faulting EGF event was evaluated in Fan and Shearer (2016a) with the European array, showing no
features of landward radiation. Depth phase effects in the back-projection images were evaluated in Fan and
Shearer (2016a), showing no bias for the imaged landward radiator.

The seismic radiation locations of the four earthquakes are well resolved, as shown in the time-integrated
back-projection images (Figure 4). In particular, the 20 April 2012 Mw 5.9 reverse-faulting EGF is imaged as
a point source with little spatial distortion (Figure 4d), suggesting high spatial resolution. Among the inte-
grated back-projection images, only the Mw 7.2 mainshock contains a landward radiator, at least with a relative
radiation strength greater than 30% (Figure 4c).

Relative radiation strength obtained from linear stacking can shed light on the nature of the landward radia-
tor imaged in Figure 4c. If the imaged radiator is due to mainshock water reverberations, the relative radiation
strength should be proportional to its associated earthquake radiation. Because the mainshock and the EGF
events are spatially close, they share a similar bathymetric setting, modulating water reverberation excita-
tion (Okamoto & Miyatake, 1989; Wiens, 1989). Here we compute the peak power time functions from the
linear-stack back-projection results for each earthquake to examine temporal variations in radiation strength,
finding the maximum over all source grid points within nonoverlapping 2-s windows (Figure 5a). Linear stack-
ing is used to preserve absolute amplitude information (Fan & Shearer, 2017; Rost & Thomas, 2002). As shown
in the peak power time function, the 10 January 2012 Mw 7.2 mainshock has a strong radiation episode
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Figure 5. Peak power time functions and back-projection snapshots of the four seaward earthquakes with 25-s stacking.
(a), normalized peak power time functions obtained by linear stacking. (b)-(e), back-projection snapshots of the four
seaward earthquakes. Jackknife resampling results are shown as the crosses, which lengths represent one standard
deviation of their latitude or longitude, and the mean locations are at the center of the crosses. Radiators with spatial
uncertainties exceeding 0.5∘ are removed. The contour lines of the 50–75-s snapshots are partially transparent. The line
transparency corresponds to the maximum back-projection power of the 50–75-s snapshot normalized by that of the
0–25-s snapshot. The 50–75-s snapshot contours are ∼17% and ∼51% transparent in (b) for the 2006 empirical Green’s
function and (d) for the 2012 mainshock.

between 50 and 75 s (Figure 5a), which temporally correlates with the observed landward radiation shown
in Figure 4c and reported in Fan and Shearer (2016a). Intriguingly, the 19 April 2006 Mw 6.2 EGF event also
has an abnormally long duration and its peak power time function suggests a radiation episode from 70 to
80 s. However, this abnormal signal has different relative strength compared to the 10 January 2012 Mw 7.2
mainshock, suggesting that both signals cannot be explained as delayed water reverberations.

To further elucidate the nature of this anomalous energy in the 19 April 2006 EGF event, we examine 25-s
back-projection snapshots of the four earthquakes (Figures 5b–5e). Uncertainties in the resolved radiators
are evaluated with jackknife resampling (Fan & Shearer, 2016b). Located radiators with spatial uncertainties

FAN AND SHEARER 10 JAN 2012 SUMATRA EARTHQUAKE 3153



Journal of Geophysical Research: Solid Earth 10.1002/2018JB015573

Figure 6. Aligned S waveforms of the 2012 Mw 7.2 mainshock. The first column shows the station map and lower-hemisphere S wave polarities (red, negative
and blue, positive). The top row shows the SH waveform alignment (a–c), while the bottom row shows the radial components (d–f ). The black ticks show the
nodal plane strikes and their 180∘ increments. Panels (c) and (f ) show the inferred arrivals on top of the azimuthal stacks. The traces are band-pass filtered at 0.02
to 0.05 Hz with a second-order Butterworth filter before the alignment. The inferred arrivals are calculated from the hypothesized location of an early aftershock
at the 20a April 2012 Mw 5.8 earthquake epicenter.

beyond 0.5∘ (∼55 km) are removed and the spatial uncertainty is set as 0.1∘ if the calculated standard devi-
ation is less than 0.1∘. The remaining radiation episodes are plotted in Figure 5. These show a coherent
landward radiator (50–75 s) during the 19 April 2006 Mw 6.2 and 10 January 2012 Mw 7.2 earthquakes,
which is absent during the 4 October 2007 Mw 6.2 (EGF event in Yue et al., 2017) and 20 April 2012 Mw 5.9
earthquakes (Figures 5b–5e). Snapshots after 25 s of the 4 October 2007 Mw 6.2 and 20 April 2012 Mw 5.9
EGF events have large spatial uncertainties (removed by jackknife resampling), suggesting that these two EGF
events had short durations and radiated most of their energy close to their epicenters. The 50–75-s landward
radiator imaged for the 19 April 2006 Mw 6.2 earthquake is close to the mainshock radiator imaged in Fan
and Shearer (2015; and shown in Figures 4c and 5d) and at first glance might appear to support the hypoth-
esis of Yue et al. (2017) that mainshock water reverberations are responsible for the mainshock radiator, as it
would seem unlikely that both earthquakes would trigger early aftershocks at similar locations. However, the
disproportionally weak strength (transparency of the contours in Figure 5b) of this radiator compared to the
mainshock radiator (Figure 5d), and the absence of similar radiators for the 4 October 2007 and 20 April 2012
EGF events, undercuts this argument.

5. S Wave Waveform Analysis and Back-Projection

Back projection is most commonly performed using teleseismic P waves but in principle can also be applied
to S waves, and Yue et al. (2017) experimented with applying back projection to teleseismic SH records from
the 10 January 2012 Mw 7.2 mainshock. They found that their SH results only imaged energy from near the
earthquake epicenter, that is, they did not see SH energy radiators from near the trench, where P radiation
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Figure 7. Aligned S wave radial components of the 2012 Mw 7.2 mainshock and seaward empirical Green’s functions.
The legends are similar to Figure 2.

is seen in analogous back-projection images. Because water reverberations should not generate significant SH
waves (Wiens, 1989), this negative observation lends some support to their water reverberation hypothesis.

Here we examine S waves from both the mainshock and EGF events in some detail. Following the waveform
alignment procedure in section 2, we analyze both transverse and radial components of the Mw 7.2 main-
shock S waveforms in the 0.02–0.05 Hz frequency band (Figure 6). The aligned S waves show clear signals
(strong energy with high-amplitude phases) in both the transverse and radial components after 50 s, but the
arrival patterns are more complex than for the P waves (Figure 2). In particular, SH wave polarities in this time
window are variable and not well correlated with the predicted radiation pattern for both the 2012 Mw 7.2
mainshock and a landward reverse-faulting EGF (20a April 2012 Mw 5.8), making it difficult to identify coher-
ent phases in the SH waves. On the other hand, SV-wave polarities are simpler for both earthquakes. If an early
aftershock was triggered, coherent negative phases after 50 s across the whole azimuth range are expected
in the mainshock S wave radial components. One late coherent phase can be identified in the mainshock
radial S waveforms despite varying strength due to possible radiation pattern effects. This coherent phase is
roughly correlated with predicted arrivals from the 20a April 2012 Mw 5.8 earthquake epicenter location with
a 70-s delay (Figure 5). This delay time agrees with the 50–75-s energy release episode identified from the
normalized peak power time function. Because each azimuth bin may have multiple records, multiple inferred
arrivals at the same azimuth are plotted on top of the aligned waveforms to estimate the uncertainties and
spread of this coherent phase. To better understand the coherent phases, waveforms of the 2006 and 2007
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strike-slip EGFs and the 20a April 2012 Mw 5.8 reverse-faulting EGF are compared with the mainshock wave-
forms (Figures 7 and S3). The rest of the EGFs are not compared because of their low SNR records. The coherent
phases in the mainshock S wave radial components are absent in the wave trains of nearby seaward EGFs
(Figure 7) but share similarities with the 20a April 2012 Mw 5.8 reverse-faulting EGF.

To further understand the origin of these signals, we perform back projection with S wave radial components
from stations in Europe following the same procedure described in section 4 (Figure S4). A coherent radiator
can be resolved landward of the trench in the mainshock back-projection images, while absent in the seaward
EGF images (2006 and 2007 strike-slip EGFs). The S wave-detected landward radiator is less well resolved com-
pared to P wave back-projection images due to its low-frequency range and fewer usable stations. It should be
noted that water reverberations should generate some SV energy from conversions at the seafloor, but much
less than expected in P waves. Overall, because of the complexities in the S waveforms, it is challenging to
draw definite conclusions on the physical nature of these phases. The similarities and differences among the
mainshock and EGF events are much clearer in the P waves than in the S waves (Figures 2, 3, and 7). Although
late coherent S wave radiation for the mainshock can be seen in Figure 6, some late-arriving SV radiation is
also present in the 2006 and 2007 strike-slip EGFs, albeit not as coherent (Figure 7).

Thus, the S wave records do not provide convincing independent evidence for a triggered early aftershock
from the 2012 mainshock, but neither do they rule out the possibility of an early aftershock or support the
mainshock water reverberation hypothesis.

6. Discussion

Ideally, the simplicity of waveform analysis and back-projection should promote consensus among different
studies of the same earthquakes. Why then are our results and conclusions different from those in Yue et al.
(2017)? Back-projection involves a number of processing choices, and we do not fully understand why we
were not able to reproduce the back-projection images presented in Yue et al. (2017). Spatial and tempo-
ral resolution tests are often necessary before definitive interpretations. For example, more careful analysis
may help in understanding the fast rupture propagation speed of ∼10 km/s for the 2007 strike-slip calibra-
tion event in Yue et al. (2017) suggested by the European array back-projection results. Waveform alignment
can be directly examined by visual inspection. Compared to our study, the waveforms in Figure 2 of Yue
et al. (2017) are likely plotted at a lower-frequency band than 0.02–0.5 Hz. We also examined P wave align-
ments at a lower-frequency band (0.02–0.2 Hz, Figures S5 and S6), which leads to the same observations
as described above. The calibration P waves in Yue et al. (2017) have abnormally low amplitudes in the first
20 s, which are rare for M6 earthquakes. All these choices in data processing could potentially lead to dif-
ferent results. Back-projection image deconvolution can potentially help in distinguishing structure-induced
artifacts in back-projection images, that is, by deconvolving the EGF back-projection images from the main-
shock back-projected image (Wang, Takeuchi, et al., 2016). This method can be useful in resolving continuous
rupture in large earthquakes. However, the large spatial separation and different focal mechanisms between
the mainshock and the possible triggered early aftershocks limit the application of direct deconvolution of
seaward nearby EGFs.

In Fan and Shearer (2016a), we dismissed the importance of water phases in causing the anomalous arrivals
in the P wave train of the Sumatra 10 January 2012 Mw 7.2, based on its source depth and the lack of resonant
peaks in P wave spectral analysis. However, with more detailed waveform analyses of the M5 reverse-faulting
earthquakes, we agree with Yue et al. (2017) that the anomalous arrivals in the P wave train of the Mw 7.2
Sumatra mainshock are caused by water reverberations. The key question is whether these reverberations
likely originated directly from the mainshock radiation (Yue et al., 2017) or whether they were generated
by a triggered early aftershock, as suggested in Fan and Shearer (2016a). Although the data constraints are
insufficient to provide 100% certainty, the bulk of the evidence supports the early aftershock hypothesis.
Perhaps the most compelling argument in favor of an early aftershock is the close visual agreement between
the mainshock waveforms (50 to 100 s) and those from the three EGF events near the proposed aftershock
locations (Figure 3), and the corresponding lack of waveform agreement between the mainshock waveforms
and those from the three EGF events near the mainshock centroid (Figures 2, 3). This is largely supported by
relative amplitude analysis and back-projection imaging of the mainshock and the three nearby EGF events,
although back projection of the 19 April 2006 EGF event does image energy near the proposed early after-
shock (see Figure 5b). We have no completely satisfactory explanation for this. It could be an imaging artifact,
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but it seems unlikely that an artifact would just happen to appear so close to the landward radiator imaged for
the mainshock. It could be delayed, displaced, and scattered water reverberations from the source (the Yue
et al., 2017 hypothesis), but this mechanism is unlikely to be able to explain both the EGF and mainshock radi-
ators, as their relative amplitudes do not scale with the mainshock amplitude. Finally, it could be a separate
triggered early aftershock, as we have hypothesized for the Mw 7.2 mainshock, but it is unlikely for a Mw 6.2
earthquake to dynamically trigger an aftershock over 100 km away.

From a Bayesian perspective, one should also consider the likelihood of competing hypotheses in the absence
of the data in question, that is, the probability of delayed and displaced mainshock water reverberations ver-
sus a triggered early aftershock. Water phases have been observed at near-source regions (Chu et al., 2011;
Okamoto & Miyatake, 1989; Wiens, 1989), particularly for near-trench ruptures (e.g., Lay et al., 2016). How-
ever, it has not yet been demonstrated, either through observations or 3-D synthetic modeling, that water
reverberations can be scattered by bathymetry over 100 km away from a M7 earthquake, such that coherent
teleseismic arrivals are produced that appear to emanate from a localized region. The 2-D synthetics presented
by Yue et al. (2017) suggest that such scattering may occur, but as discussed in their paper, 3-D modeling with
realistic bathymetry and real station distributions should be performed to better resolve this issue. Okamoto
and Takenaka (2009) highlighted that 2.5-D/3-D modeling with realistic bathymetry is necessary to unravel
the complex P and SH waves. Most previously reported cases of water reverberations have been for reverse-
or normal-faulting earthquakes (An et al., 2017; Chu et al., 2011; Okamoto & Miyatake, 1989; Okamoto &
Takenaka, 2009; Wiens, 1989), and is unclear whether strike-slip earthquakes like the 2012 Mw 7.2 mainshock
are efficient at generating water reverberations. Furthermore, the 2012 mainshock and its seaward EGFs are
deeper than 20 km (International Seismological Centre, 2013), in contrast to the shallower depths of previ-
ously reported earthquakes that effectively excited water phases (≤15 km; An et al., 2017; Chu et al., 2011;
Okamoto & Miyatake, 1989; Wiens, 1989).

On the other hand, dynamic triggering has been widely reported globally at various tectonic settings
(e.g., Kilb et al., 2000; Peng et al., 2010; Velasco et al., 2008). In particular, many studies have shown that
near-to-intermediate field dynamic triggering often occurs and M5 early aftershocks have recently been doc-
umented for several large earthquakes (e.g., Nissen et al., 2016; Uchide et al., 2016; Wang, Kawakatsu, et al.,
2016; Yoshida, 2016). Thus, it would not be particularly surprising if the Sumatra M7.2 earthquake triggered an
early aftershock. Assuming that such triggering did occur, its appearance in the mainshock waveforms should
closely resemble what we see in the actual observations, as confirmed by the three landward EGF events
(compare Figures 2 and 3).

7. Conclusions

The teleseismic wavefield of the 10 January 2012 Mw 7.2 Sumatra earthquake was complex with promi-
nent long-lasting reverberatory phases from 50 to 100 s across the entire azimuthal range of stations. From
back-projection and multifrequency-band P wave analyses, Fan and Shearer (2016a) suggested that these
phases were from an early aftershock(s) ∼150 km away from the mainshock, which was likely dynamically
triggered because its occurrence coincides with passing surface waves. However, recently Yue et al. (2017)
argued that the anomalous arrivals are more likely water reverberations excited by the mainshock. To address
this controversy, we analyzed waveforms of three M6 seaward EGF events within 100 km of the mainshock
and three M5.5 reverse-faulting landward EGF events near the early aftershock location proposed by Fan
and Shearer (2016a). Our results suggest that the reverberatory coherent phases in the mainshock P wave-
forms were not caused by mainshock interactions with Earth structure alone, but require a separate, likely
triggered, earthquake source over 100 km landward of the mainshock. However, not all of the features in
the observed waveforms can be definitely explained, motivating the importance of more detailed observa-
tions and modeling of both earthquake triggering and water reverberations in complex 3-D subduction zone
geometries.
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