
1. Introduction
Haiti is located in a transpressive tectonic boundary that is seismically active and prone to damaging earthquakes 
(Benford et al., 2012; Manaker et al., 2008; Saint Fleur et al., 2015; Figure 1). The Caribbean plate obliquely 
converges with the North American plate at 19–20 mm yr−1 toward the northeast. The plate motions are largely 
accommodated by the Septentrional fault zone in the north and the Enriquillo-Plantain Garden fault (EPGF) zone 
in the south, forming the intermediate Gonâve microplate (Mann et al., 1984; Prentice et al., 2010; Figure 1). The 
oblique convergence results in compressional uplifts in Hispaniola (Haiti and Dominican Republic) in addition 
to the dominant left-lateral plate movements (Mann et al., 1995; Pubellier et al., 2000). Such a complex tectonic 
setting drives the development of an intertwined fault system, involving blind secondary faults and segmented 
faults with various geometries (Jackson et al., 2006; Hamling et al., 2017; Hayes et al., 2010). These faults do 
not always align with the apparent plate motions and can be missed from geological surveys and geodetic meas-
urements, leading to unexpectedly complex earthquakes, such as the moment magnitude (MW) 7.0 2010 Haiti 
earthquake (Hayes et al., 2010; Saint Fleur et al., 2015, 2020).

On 14 August 2021, a devastating MW 7.2 earthquake struck the Tiburon Peninsula, Haiti, ∼96 km west of the 
2010 earthquake (Figure 1). The earthquake caused at least 2,000+ casualties and severe infrastructural dam-
age in densely populated areas (reported by the Haitian Civil Protection, Emergency Response Coordination 
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Centre, 2021). The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) reported 
the earthquake origin on 14 August 2021 12:29:08 (UTC) at 18.408°N, 73.475°W, ∼125 km west from Port-au-
Prince capital city (U.S. Geological Survey Earthquake Hazards Program, 2017). The Global Centroid Moment 
Tensor (GCMT) solution suggests an oblique strike-slip faulting style of the 2021 Haiti earthquake (Dziewonski 
& Anderson, 1981; Ekström et al., 2012). The interferometric synthetic aperture radar (InSAR) shows co-seismic 
uplift near the epicenter and north of EPGF (Geospatial Information Authority of Japan, 2021). The satellite 

Figure 1. Finite-fault and back-projection models of the 2021 Haiti earthquake and seismo-tectonic summary of the Tiburon 
Peninsula, Southern Haiti. (a) The colored contours show the back-projection results. The location uncertainties (one 
standard deviation of latitude or longitude) are from Jackknife re-sampling. The black stars show the epicenters of the 2021 
and 2010 Haiti earthquakes (U.S. Geological Survey Earthquake Hazards Program, 2017). The white stars show historical 
earthquakes in the region (Bakun et al., 2012). The gray dots are the background seismicity, and the yellow dots are the 
1-month aftershocks of the 2021 Haiti earthquake. The gray and yellow beach balls show available GCMT solutions of the 
events (Dziewonski et al., 1981; Ekström et al., 2012) before and after the 2021 Haiti earthquake. The black lines show active 
faults in the region (Styron et al., 2020). The inset shows regional tectonics (yellow rectangle, Figure 1a) with the black lines 
as the plate boundaries (Bird, 2003) and the arrow showing the relative plate velocity vector between the Caribbean (CA) and 
the North American (NA) plates (DeMets et al., 2010) juxtaposed against the Gonâve (GO) microplate. The star shows the 
epicenter of the 2021 Haiti earthquake. The topography/bathymetry is from GEBCO Bathymetric Compilation Group (2019). 
(b) The colored cells show the finite-fault solution. Large slip patches (>50% of the maximum slip) are empathized by black 
cell boarders. The topography is from Shuttle Radar Topography Mission (U.S. Geological Survey, 2015). (c) The cross-
section of the moment-tensor distribution extracted from the resultant potency-density tensors. All the beach balls of the 
moment-tensor solution are represented as a lower-hemisphere stereographic projection (far-side focal sphere). The solution 
with large slip (>50% of the maximum slip) is empathized by black line.
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images also suggest westward deformations ∼60 km west of the epicenter (Geospatial Information Authority of 
Japan, 2021). The complex crustal deformation suggests a possible multi-fault rupture of the 2021 Haiti earth-
quake, with faulting geometries that do not seem to align with the main EPGF configuration (Figure 1).

We investigate the rupture evolution of the 2021 Haiti earthquake by performing integrated seismological anal-
yses, including teleseismic finite-fault inversion and P-wave back-projection. Our methods require minimal as-
sumptions of the earthquake rupture propagation. Here we find the earthquake cascadingly ruptured at least two 
disconnected faults with different faulting styles. The earthquake initiated on a blind thrust fault and then jumped 
onto a strike-slip fault propagating westward from the epicenter. The fault geometries of the two rupture episodes 
do not align with the superficial lineament of EPGF. The initial thrust slip likely released strain accumulated from 
the EPGF-normal convergence. The second strike-slip subevent likely ruptured a fault plane 45° counterclock-
wise of the EPGF strike, agreeing with the oblique block motion oriented southwest-northeast. Our source mod-
els show that the 2021 earthquake did not rupture the main EPGF but broke secondary faults that were previously 
unrecognized. The results highlight that the plate convergence is accommodated by a complex fault network with 
diverse faulting styles in addition to the main EPGF.

2. Materials and Methods
Imaging earthquake rupture processes is critical to understanding earthquake-source physics and assessing haz-
ards induced by ground shaking. However, it can be challenging when multiple different faults are involved 
(Hayes et al., 2010; Meng et al., 2012; Ulrich et al., 2019). For example, finite-fault inversion often preassumes 
a fault plane, which limits identifying hidden earthquake rupture processes of different focal mechanisms. The 
prior information (assumptions) about the fault system may often be inaccurate and differ from the true rupture 
faults at depth. Such assumption-induced errors can be significant for remote earthquakes when other geophysical 
and geological observations are limited. Therefore, exploring seismic records with minimal assumptions is highly 
desirable for uncovering complex earthquake rupture processes.

To analyze the rupture evolution of the 2021 Haiti earthquake, we use a time-domain back-projection method 
(Ishii et al., 2005; Fan & Shearer, 2015) and a new finite-fault inversion approach (Shimizu et al., 2020; Yagi 
& Fukahata, 2011). We take advantage of both low- and high-frequency seismic records of globally distributed 
networks and arrays. The back-projection method is effective at resolving coherent earthquake high-frequency 
radiation and can identify possible multiple rupture episodes of large earthquakes across complex fault systems 
with minimal assumptions (Lay et al., 2018; Kehoe & Kiser, 2020; Meng et al., 2012; Nissen et al., 2016; Sa-
triano et al., 2012; D. Wang et al., 2016; Yao et al., 2011). Therefore, it has been successfully implemented to 
study the spatiotemporal evolution of complex earthquakes, including multi-fault rupture and supershear rupture 
earthquakes (e.g., Fan et al., 2016; Meng et al., 2012; Hicks et al., 2020). To resolve the earthquake slip distri-
bution, we apply a finite-fault inversion method that is based on the potency-density tensor approach (Shimizu 
et al., 2020). We directly resolve the fault geometry by representing the fault slip as the superposition of five-ba-
sis double couple components (Kikuchi & Kanamori, 1991) and can obtain a spatiotemporal distribution of the 
potency density (Ampuero & Dahlen, 2005). The method is particularly suitable for investigating the 2021 Haiti 
earthquake as it can flexibly accommodate rupture scenarios involving multiple faults with various geometries. 
Further, the method explicitly introduces an error term of Green's function into the data covariance matrix to 
account for the associated uncertainties (Yagi & Fukahata, 2011). Such a formulation advances the conventional 
finite-fault inversion by avoiding modeling errors due to fault geometry assumptions and has proven valuable 
in resolving complex large earthquakes (Hicks et al., 2020; Okuwaki et al., 2020; Tadapansawut et al., 2021; 
Yamashita et al., 2021). The obtained slip models have illuminated previously unknown fault geometries and 
sporadic rupture propagations in geometrically complex fault systems (Tadapansawut et al., 2021; Yamashita 
et al., 2021). Our integrated strategy of earthquake-source imaging is designed to resolve the rupture evolution 
without assuming the rupture speed, rupture direction, or fault geometry.

2.1. Back-Projection

We use vertical-component teleseismic P waveforms from globally distributed arrays (839 stations within 30°–90° 
epicentral distance) for the back-projection analysis to image the rupture propagation (Figure S1 in Supporting In-
formation S1). We filter the records at 0.2–1 Hz with a second-order Butterworth filter. For a data quality-control 
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step, records with signal-to-noise ratios (SNR) less than 5 are removed. The SNR is defined as the root-mean-
square (RMS) amplitude ratio from time windows 20 s before and 20 s after the theoretical P-wave arrival ob-
tained from IASP91 (B. Kennett & Engdahl, 1991). We further discard stations that are close to the GCMT nodal 
planes, and the remaining traces are visually examined to assure clear P wave onsets. The travel time errors due 
to the 3D velocity structure are corrected by aligning initial P waves with multi-channel cross-correlations of the 
waveforms within −1 to 8 s of the theoretical arrivals. We only use records with positive P-wave polarities and 
average cross-correlation coefficients greater than 0.6 to image the earthquake. We grid potential sources at a 
10-km horizontal spacing with the grids fixed at the hypocentral depth, covering a 600 km by 600 km area with 
its epicenter at the center of the grids. Back-projection images are obtained through the Nth root stacking method 
(Rost & Thomas, 2002; Xu et al., 2009) with N = 4. The Nth root method can sharpen the back-projection images 
but would distort the absolute amplitude of the stacks (Rost & Thomas, 2002; Xu et al., 2009). Seismic records 
are self-normalized and inversely scaled by the number of contributing stations within 5° of each other. Such a 
procedure can neutralize the radiation pattern effects and balance the spatial coverage of stations. To evaluate the 
rupture propagation, we compute back-projection snapshots with a 10-s stacking window at a 5-s step for five 
time windows (Figure 1). These snapshots are normalized by the maximum power of each window (Figure 1).

The globally distributed arrays maximize the azimuthal coverage of the earthquake, allowing a high spatial res-
olution of the back-projected results (Fan & Shearer, 2015). We have considered possible biases from the depth 
and water phases, but such effects would be minor in our results because the earthquake was shallow and we use 
a long stacking window, and the results are located far away from the coast (Fan & Shearer, 2015, 2018). The 
robustness of the back-projection results is quantitatively evaluated by a Jackknife re-sampling exercise (Efron & 
Tibshirani, 1994; Fan & Shearer, 2016; Figure 3). The spatial uncertainties of the peak loci are less than 50 km 
along latitude and 11 km along longitude (Figures 1 and 3). The spatial uncertainties along the strike (268° azi-
muth) show that the station geometry is optimally suited to track the rupture-front migration (Figure 3).

2.2. Finite-Fault Inversion

Our finite-fault inversion method is based on a potency-density tensor approach (Shimizu et al., 2020). We use 
vertical-component teleseismic P waveforms from 43 globally distributed stations (Figure S2 in Supporting In-
formation S1). The data are procured to ensure good azimuthal coverage of high-quality records, with signal-to-
noise ratios that are sufficient for reliable picks of the P-wave first motions (Okuwaki et al., 2016). The first mo-
tions are manually determined. The data are then deconvolved from instrument responses into velocity time series 
at a 0.6 s sampling interval. To obtain Green's functions, we used the ak135 model (B. L. Kennett et al., 1995) to 
calculate travel time, ray parameter, and geometric spreading factors. Green's functions are calculated based on 
a method of the ray-theory approach (Kikuchi & Kanamori, 1991). The CRUST1.0 model (Laske et al., 2013) is 
used to extract a one-dimensional layered velocity model near the source region to calculate Haskel propagator 
in Green's functions. We do not apply a low-pass filter to either the observed or synthetic waveforms, and we 
intend to retrieve detailed rupture processes recorded in the high-frequency components of the seismic records 
(Shimizu et al., 2020).

Guided by available seismological and geodetic observations (Dziewonski et al., 1981; Ekström et al., 2012; U.S. 
Geological Survey Earthquake Hazards Program, 2017), we design a planer model domain for the finite-fault 
inversion (Figure 1). The model space extends along 268° strike and 64° dip directions based on the GCMT solu-
tion (Dziewonski et al., 1981; Ekström et al., 2012), and covers an area of 170-km in length and 35-km in width. 
To evaluate possible errors that may arise from the model-domain geometry, we also test alternative geometries 
adopting a 90° or 0° dipping planer domain (Figure S3 in Supporting Information S1; see Section 3). Each sub-
fault is separated by 10 and 5 km along the strike and dip directions, respectively. The slip-rate function for each 
source grid is represented by linear B-splines at a temporal interval of 0.6 s. The total source duration is set as 
30 s. The maximum rupture velocity is set as 5 km/s, which is guided by the back-projection results (Figure 3). 
We set the hypocenter at 18.408°N, 73.475°W, and 12-km at depth for the initial rupture point, based on the 
earthquake origin reported by USGS NEIC (U.S. Geological Survey Earthquake Hazards Program, 2017). After 
obtaining a preferred finite-fault model, we evaluate the resolvability of the preferred model by using synthetic 
waveforms from the solution of the 2021 Haiti earthquake (Figures 1–3) to invert for a new slip model. The 
results show that the input and output models agree well (Figure S4 in Supporting Information S1), suggesting 
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that the data coverage is sufficient, the inversion is stable, and our obtained 
finite-fault model of the 2021 Haiti earthquake is robust.

3. Results
The back-projection images suggest an apparent unilateral westward rupture 
propagation of the 2021 Haiti earthquake, involving two discrete episodes 
of strong seismic radiation (0.2–1  Hz). During the first 10  s, we observe 
the rupture centered near the epicenter with a minor horizontal migration 
of ∼10 km eastward of the epicenter (Figure 3). Another episode of strong 
seismic radiation occurs 15 s later and is 60 km westward from the epicenter. 
The rupture front continued propagating westward till 90 km away from the 
epicenter lasting for a total of ∼30 s (Figure 1). Intriguingly, there is an ap-
parent spatial gap between the two high-frequency episodes, spanning about 
60 km horizontally (Figure 1). Given that we use a 10 s long stacking time 
window with a 5 s overlapping time step, this apparent gap is likely real and 
may represent two distinct subevents. We have tested time windows of vari-
ous lengths, and this sporadic feature remains the same.

The finite-fault model finds two major slip patches, one centered near the 
epicenter and the other 70 km west of the epicenter (Figure 1). The first slip 
patch is dominated by a reverse faulting mechanism near the epicenter. The 
resolved focal mechanisms suggest a fault plane striking along the east-west 
direction with a dipping angle of ∼63°. The model domain with the final slip 
over 1.3 m extends about 40 by 30 km. This episode of slip released 35% of 
the total seismic moment for about 10 s, centered at a depth of 20 km. The 
second major slip patch has a vertically dipping, strike-slip faulting mecha-
nism. The dominant strike is 223° or 313°, and the slip area covers an area of 
40 km in length and 25 km in width of the model domain. Most slips of the 
second episode occurred from 12 to 22 s at a depth shallower than ∼20 km, 
releasing 32% of the total seismic moment. The two major slip patches and 
their disparate mechanisms are robustly resolved despite different choices of 
the model domain configuration (Figure S3 in Supporting Information S1). 
Using either a purely vertical or horizontal dipping planer domain, we ob-
tain very similar slip features as of our preferred finite-fault model (Figure 
S3 in Supporting Information S1). The stability results from using teleseis-
mic P-waves that our finite-fault inversion approach is insensitive to an as-
sumed spatial model domain (e.g., Shimizu et al., 2020). The total seismic 
moment of the finite-fault model is 1.3 × 1022 N m (MW 7.3) for the 2021 
Haiti earthquake.

The back-projection and finite-fault models collectively show that the 2021 
Haiti earthquake involves at least two discrete rupture episodes, E1 and 
E2 (Figures 2 and 3). For the first 10 s of the rupture, the first slip episode 
(E1) compactly broke a thrust fault within 20  km of the hypocenter. The 
back-projection images suggest an apparent slow horizontal rupture speed 
of 1–2 km/s (along 268° azimuth), and the finite-fault model shows that the 

slip of E1 extends to 25 km at depth. These results suggest that the along dip rupture likely controls this episode. 
After a temporary hiatus (8–12 s) of slip propagation, the second episode (E2) suddenly starts in the western part 
of the model domain (60 km away from the epicenter, Figure 3). The horizontal rupture speed of E2 is 4–5 km/s 
(along 268° azimuth), much faster than that of E1. The moment release starts to decelerate after ∼20 s and ceases 
at ∼25 s. Our source models show different faulting styles of E1 and E2 and resolve a clear separation of the two 
subevents in both space and time.

Figure 2. Snapshots of the finite-fault model. (a) The cross-section of the 
slip-rate distribution. Large slip rate areas (>50% of the maximum slip rate) 
are outlined by the black cell boarders. The star denotes the hypocenter. The 
black circles are the reference rupture speeds. (b) Centroid moment tensor 
solutions of the finite-fault model for the snapshot time windows. The color 
and size of the focal mechanisms correlate with the maximum slip rates of the 
time windows.
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4. Discussion
4.1. Thrusting Faulting of E1 Reflecting the Oblique Plate Convergence

The 2021 Haiti earthquake shows a two-stage, multi-segment rupture process 
involving both thrust and strike-slip faulting styles. The rupture process is 
unexpected as there is no indication of permitting such a complex evolution 
from the surface expression of EPGF. The seismic data strongly requires E1 
to have a reverse faulting style, a blind thrust fault (Figure S5 in Supporting 
Information S1). InSAR images show an uplift deformation north of EPGF 
(Geospatial Information Authority of Japan, 2021; Figure S8 in Supporting 
Information S1), and the aftershocks (up to 1 month) also cluster in the north-
ern side of EPGF (Figure 1). Although it is difficult to identify the fault plane 
solely from the finite-fault model, multiple lines of geophysical evidence 
suggest a north-dipping fault plane of E1, striking the east-west direction.

The majority of E1's moment is released at depth. Assuming the earthquake 
initiated at 12 km depth (close to the USGS origin), the finite-fault model 
indicates E1 migrating from shallow (12 km) to deep (25 km) for the first 
10 s, rupturing downward within a compact region. The downward rupture 
propagation corroborates the temporal horizontal stagnation of E1 shown in 
the back-projection results. Such a rupture scenario would explain the subtle 
surface deformation imaged by InSAR near the epicenter.

The thrust faulting style of E1 contrasts with the left-lateral strike-slip system 
of EPGF, illuminating a blind fault releasing compressional strains, which 
is not registered in the Styron et al. (2020) active fault database. Intriguing-
ly, the E1 rupture area coincides with a region with steep topography near 
the edge of the l’Asile basin, which is filled with Miocene units overlaying 
the Cretaceous fold units (Wessels et al., 2019). The E1 strike aligns with 
a high topographic trend of the region along the east-west direction. Addi-
tionally, the Global Positioning System (GPS) velocity modeling (Benford 
et al., 2012; Calais et al., 2016) shows that the oblique plate convergence is 
partitioned into an EPGF-parallel motion at 8.7 mm yr−1 and an EPGF-nor-
mal motion at 6.0 mm yr−1 (Wessels et al., 2019). Therefore, we speculate 
that E1 reflects a faulting process that uplifts and shortens the crust in the 
l’Asile region corresponding to the EPGF-normal compression (Figure 4). 
Such a faulting process at an oblique transpressive tectonic boundary would 
have contributed to the development of this topographic feature, leading to 
folding and thrusting that have been documented by geological surveys (Wes-
sels et al., 2019).

To the east of the l’Asile basin, there was a destructive earthquake in 1770 
near the 2021 Haiti earthquake (Figure 1), with a rupture process that is poor-
ly constrained (Bakun et al., 2012; Calais et al., 2010). If the 1770 earthquake 
released most of the accumulated strain, then there would be a slip deficit 
amounting to ∼2  m since the last event. E1 of the 2021 Haiti earthquake 
only slipped about 0.3 m along the EPGF parallel direction, suggesting the 
remaining slip deficit may be accommodated by future earthquakes in the 
l’Asile region.

4.2. Strike-Slip Faulting of E2 Deviating Away From the Main EPGF Strand

E2 ruptured a vertical strike-slip fault and lasted for about 13 s (from 12 to 25 s). The E2 strike is likely either 
at a ∼223° (southwest) or ∼313° (northwest) azimuth suggested by the finite-fault model. The back-projection 
images show a southwestward rupture propagation, favoring the ∼223° strike-slip fault. This strike direction 

Figure 3. Spatiotemporal evolutions of the finite-fault and back-projection 
models. (a) Moment rate function of the finite-fault model. The beach 
balls show the centroid moment tensor solutions of the finite-fault model 
for the snapshot time windows at every 1 s. The color and size of the focal 
mechanisms correlate with the maximum slip rates of the time windows. 
(b) Strikes of the centroid moment tensor solutions shown in Figure 3a. As 
reasoned in the paper, we prefer a north-dipping fault plane for E1 from 0 to 
10 s and a southwest-northeast fault plane for E2 from 15 to 25 s. The color 
and size of the circles correlate with the maximum slip rates of the time 
windows with large slip rate snapshots (>50% of the maximum slip rate) 
outlined by black circles. (c) Spatiotemporal distribution of the finite-fault 
model and the back-projection peak loci of the five 10-s long windows. The 
results are projected along a direction of 268° azimuth (middle panel) and 
along depth (bottom panel, back-projection has no depth resolution for this 
case). The contours show the slip rate distributions. The colored dots are the 
back-projection peak loci of the 10-s long snapshots (Figure 1). The vertical 
bars are the uncertainty estimates from the jackknife re-sampling exercise and 
the horizontal bars show the stacking window length. The black lines show the 
reference rupture speeds.
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differs from the major trend of EPGF, oriented at a ∼268° azimuth. The in-
ter-seismic GPS velocity fields suggest an obliquely convergent direction 
along the northeast-southwest direction (∼50° azimuth) between the Gonâve 
microplate and the Caribbean plate (Benford et al., 2012; Calais et al., 2016; 
Figure  4). Such a deformation pattern is inconsistent with the accumulat-
ed strain being released purely by strike-slip motion along the EPGF at the 
∼268° direction, but suggests that part of the elastic strain is partitioned in 
the EPGF-normal direction.

Given the relative plate motion, it is not surprising that E2 ruptured a fault 
plane rotated counterclockwise from the EPGF strike to the northeast-south-
west direction (∼223° azimuth), and we interpret this to be a direct conse-
quence of the oblique plate convergence. The topographic feature around 
the 2021 Haiti earthquake transitions from the l’Asile basin (near E1) to the 
Macaya mountain (near E2, peak elevation 2,347 m), which are connected 
by the Clonard and Camp-Perrin basins (Saint Fleur et al., 2020; Figure 4). 
Within the EPGF system, the fault strike veers counterclockwise from the 
l’Asile basin to the Camp-Perrin basin. The veering likely formed the left-
step of the EPGF at ∼74°W, with a pull-apart motion that could have formed 
the basins. Such a tectonic setting would create faults with various geome-
tries but with limited spatial extent, as the whole fault network is confined 
within 110 km. The intertwined fault network may rupture at once, leading to 
complex, sporadic rupture developments, such as the 2021 Haiti earthquake.

We observe a strong seismic radiation episode at the western end of E2 from 
20 to 30 s. The finite-fault model shows that the focal mechanisms of this last 
episode (20–30 s) differ slightly from those of slips at 15–20 s (Figure 3). 
The 20–30 s slips remain as strike-slip ruptures, but their nodal planes are ro-
tated about ∼10° clockwise at a ∼233° azimuth (Figure 3). If this geometric 
variation holds true, the fault rotation can serve as a restraining bend (Bru-

hat et al., 2016), which may have caused a sudden deceleration of the rupture and generated stopping phases, 
radiating strong high-frequency seismic energy (Bernard & Madariaga,  1984; Madariaga,  1977; Okuwaki & 
Yagi, 2018; Spudich & Frazer, 1984).

Interferometric Synthetic Aperture Radar (InSAR) observations are not included to invert for the earthquake slip 
distribution as the regional dense vegetation and widely triggered landslides may complicate and hinder InSAR 
from accurately measuring changes between satellite images (Martinez et al., 2021; NASA/JPL-Caltech/Coperni-
cus, 2021). However, the displacement fields obtained from InSAR can validate finite-fault models. The surface 
line-of-sight (LOS) displacements of descending and ascending tracks obtained using ALOS-2 (Geospatial In-
formation Authority of Japan, 2021) and Sentinel-1 (NASA/JPL-Caltech/Copernicus, 2021) interferograms show 
complex patterns and indicate that the earthquake rupture westward from the epicenter (Geospatial Information 
Authority of Japan, 2021), likely breaking more than one fault (Figures S8 and S9 in Supporting Information S1). 
Such a spatial pattern agrees well with our back-projection and finite-fault models (Figures S8 and S9 in Sup-
porting Information S1). Both the descending and ascending frames show negative LOS displacements around 
E1 near the epicenter with a clear east-west lineament edge, indicating uplifts in the north. Near the E2 domain, 
the surface deformation exceeds 0.8 m in the northern section across EPGF, and a sharp oblique deformation 
lineament cuts through an EPGF strand near the E2 rupture domain (annotation, Figure S8b in Supporting In-
formation S1), which likely corresponds to surface ruptures (Geospatial Information Authority of Japan, 2021).

We further forward-model the LOS surface displacements using a suite of finite-fault solutions and compare the 
model predictions to the observations. In addition to the preferred finite-fault model (E1 + E2, Figures S8g, S8h, 
S9g, and S9h in Supporting Information S1), we also examine LOS surface displacements predicted by the USGS 
finite-fault model (U.S. Geological Survey Earthquake Hazards Program, 2017; Figures S8c, S8d, S9c, and S9d 
in Supporting Information S1), a model fixing the sub-faults as having the GCMT focal mechanism (Dziewonski 
et al., 1981; Ekström et al., 2012) but with our obtained moments (Figures S8e, S8f, S9e, and S9f in Supporting 
Information S1), a model fixing the E2 strike as that of E1 and keeping the remaining parameters the same as our 

Figure 4. Cartoon interpretation of the faulting process and the cascading 
rupture development of the 2021 Haiti earthquake. The star shows the 
hypocenter (U.S. Geological Survey Earthquake Hazards Program, 2017). 
The one-side arrows show the interpreted fault motions. The beach balls are 
the centroid moment tensor solutions of the two rupture episodes (E1 and E2, 
Figure 1). The solid black lines show the surface projections of faults. The 
dashed line shows the EPGF trace (268° azimuth). The full arrows show the 
relative plate motion direction of the Caribbean and Gonâve plates (Benford 
et al., 2012). The topography is from Shuttle Radar Topography Mission (U.S. 
Geological Survey, 2015).
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preferred finite-fault solution (E1 + E1, Figures S8i, S8j, S9i, and S9j in Supporting Information S1), and a model 
fixing the E2 strike as that of EPGF and keeping the remaining parameters the same as our preferred finite-fault 
solution (E1 + EPGF, Figures S8k, S8l, S9k, and S9l in Supporting Information S1). The LOS displacements 
are modeled using the finite-fault models within an elastic half-space (Okada, 1985) assuming a shear modulus 
of 36 GPa and a Poisson's ratio of 0.25. The predicted LOS displacements using the preferred finite-fault model 
(E1 + E2) can explain the observed uplifts near the hypocenter as due to the reverse faulting of E1 (Figures S8g, 
S8h, S9g, and S9h in Supporting Information S1), and the sharp oblique lineament deformation is predicted by 
the E2 rupture, which cannot be explained by E1 or hypothesized slips along EPGF (Figure S8 in Supporting In-
formation S1). However, our finite-fault solution does not predict the positive surface deformation north of the E2 
domain in the descending frame. This might be due to left-lateral slips along other fault segments, which might 
have different strikes than E2 or EPGF. Such rupture details would have been missed by the finite-fault model 
because of the smoothing constraints used to stabilize the inversion. It is also nontrivial to isolate the co-seismic 
slip from the InSAR images because of the local terrestrial condition and acquisition delays (e.g., 3 and 4 days 
after the mainshock for the ALOS-2/PALSAR-2 images). The aftershocks and widely triggered landslides (Mar-
tinez et al., 2021; NASA Earth Observatory, 2021) might have contributed to the observed surface displacements 
as well. Overall, the GCMT model cannot explain the descending frame displacements, and the USGS model can 
explain some surface displacement features albeit missing details. Qualitatively, the preferred finite-fault model 
(E1 + E2) and the model adopting EPGF strike for E2 (E1 + EPGF) seem to provide the best fits, yielding similar 
matches to the observations. In particular, slips along the EPGF strike in the E2 rupture domain could explain 
certain details better than the resolved E2 strike at some locations. The similar data fit of the two models hampers 
the hypothesis that E2 strike counterclockwise rotates 45° from the EPGF orientation.

To investigate the E2 strike, we examine Rayleigh-to-Love wave amplitude ratios of broadband seismic stations 
within 30° epicenteral distance. Rayleigh-to-Love wave amplitude ratio is insensitive to 3D path effects but is 
highly sensitive to earthquake radiation pattern (focal mechanism). Therefore, the spatial pattern of Rayleigh-to-
Love wave amplitude ratio can independently evaluate the fault configurations. We first download three-com-
ponent, broadband seismic data at a total of 77 stations spanning all azimuths. The data are filtered at a 20–50 s 
period band with a fourth-order Butterworth bandpass filter. We then rotate the horizontal components to meas-
ure and compute Rayleigh-to-Love wave amplitude ratios at each station. The observed Rayleigh-to-Love wave 
amplitude ratios agree well the predicted ones from our preferred finite-fault model (E1 + E2, Figure S10 in 
Supporting Information S1) for stations at most azimuths. We find that our preferred finite-fault model provides 
the best fit to the observed amplitude ratios and the E2 strike rotating 45° from the EPGF orientation is necessary 
to explain the stations in northeastern US. Other source models, including the GCMT and E1 + EPGF models, 
cannot explain the observed amplitude ratios (Dziewonski et al., 1981; Ekström et al., 2012; Figure S10 in Sup-
porting Information S1). The validation exercises using independent datasets collectively favor that the focal 
mechanism of E2 differs from that of E1 and the E2 strike likely rotates 45° counterclockwise from the EPGF 
orientation.

Strong motion records and local geodetic datasets would provide additional constraints to the 2021 earthquake 
rupture properties. However, most of such datasets are unavailable at the moment, limiting their use to resolve the 
rupture process. For example, only one seismic station near Port-au-Prince (AY.NQUSE station) has reported the 
earthquake records to IRIS, and the nearest GNSS station (JME2) is located ∼100 km away from the epicenter. 
The data scarcity prohibits further analyses using near-field data to resolve the Haiti earthquake. Our rupture 
models might help to guide future investigations when the data are publicly available.

4.3. Complex Fault Network and Its Implication for Hazard Risks

Disconnected faults can interact and trigger each other in various ways during either a single event or an earth-
quake sequence (Fan & Shearer, 2016; Freed, 2005; Goldberg et  al., 2020; Harris et  al., 1991, 2002; Nissen 
et al., 2016; Ruppert et al., 2018). The E1 and E2 fault segments are separated by ∼60 km and ruptured sequen-
tially within 10 s (Figure 1), leading to an apparent migration speed of ∼6 km/s, which is comparable to the local 
P-wave velocity in Southern Haiti (Douilly et al., 2013, 2016). In conjunction with possible minor effects from 
static Coulomb stress changes (see Text S1 in Supporting Information S1 for details), such a spatiotemporal rela-
tion during the 2021 Haiti earthquake indicates that the discontinuous jump from E1 to E2 may have been caused 
by the dynamic effects from the passing seismic waves.
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The 2021 Haiti earthquake locates ∼96 km apart from the 2010 Haiti earthquake, and both earthquakes involve 
blind thrust faults in a similar fashion (Hayes et al., 2010). The correlation raises the question of whether the 2010 
earthquake triggered the 2021 Haiti earthquake. Such an earthquake-to-earthquake triggering process has been 
reported at various tectonic settings, and the 1992 Landers earthquake and the 1999 Hector Mine earthquake in 
southern California resemble a similar pair to the Haiti earthquakes (e.g., Felzer et al., 2002; Parsons & Dre-
ger, 2000; Pollitz & Sacks, 2002). Both the Landers and Hector Mine earthquakes are strike-slip events involving 
multiple segments with similar magnitudes of the Haiti earthquakes, and the Landers earthquake likely triggered 
the Hector Mine earthquake after 8 years with static stress changes likely involved in its nucleation (e.g., Pollitz 
& Sacks, 2002; Price & Bürgmann, 2002; Zeng, 2001). Although unraveling such stress interactions between the 
2010 and 2021 Haiti earthquakes will require more detailed analysis, our preliminary Coulomb stress analyses 
suggests that the static stress changes on the E1 fault induced by the 2010 Haiti earthquake (Hayes et al., 2010) are 
minor at a 12 km depth as low as <10 kPa (see Text S1 in Supporting Information S1 for details). Future analyses 
using near-field observations may offer insights in the inter-connections between the two M7 Haiti earthquakes.

The different focal mechanisms of E1 and E2 suggest that the 2021 Haiti earthquake likely ruptured a dis-
connected fault networks. Multi-fault earthquakes often cause more high frequency radiations than single-fault 
earthquakes. For example, slip migrating between different faults would cause abrupt change of rupture velocity 
and/or slip rate, and such geometric complexities would cause more high-frequency radiations (Aki, 1979; Kase 
& Day, 2006; Madariaga et al., 2006; Okuwaki & Yagi, 2018). Further, irregular fault structures and misaligned 
complex fault networks can interact with each other during earthquake ruptures, impacting earthquake rupture 
dynamics by producing intense high-frequency ground motions (e.g., Chu et al., 2021; Tsai & Hirth, 2020; Tsai 
et al., 2021). Therefore, earthquakes rupturing complex fault networks would likely produce stronger high-fre-
quency ground motions, imposing greater hazard risks. Resolving such complex multi-fault rupture processes 
will offer physical insights into possible rupture scenarios and aid future hazard assessment.

5. Conclusions
We identify two distinct rupture episodes of the MW 7.2 2021 Haiti earthquake. In the first episode, E1 ruptured 
a blind thrust fault, and the earthquake then jumped to a strike-slip fault (E2) that is 60 km west of the epicenter. 
The complex rupture process likely results from the regional oblique plate convergence. The second subevent 
strikes at a direction differing from the EPGF network trend. Its southwest-northeast strike orientation reflects 
the oblique convergence motion between the Caribbean plate and the Gonâve microplate. The discontinuous 
jump from E1 to E2 ruptures is likely facilitated by dynamic triggering. The complex tectonic setting produces 
multiple-segmented fault patches that have various focal mechanisms, and the 2021 Haiti earthquake exemplifies 
that these fault patches may rupture at once, causing devastating hazards over a large region.

Data Availability Statement
All the materials presented in this paper are archived and available at https://doi.org/10.5281/zenodo.5534984. 
The seismic data were downloaded through the IRIS Wilber 3 system (https://ds.iris.edu/wilber3/find_event) 
or IRIS Web Services (https://service.iris.edu). We used ObsPy (https://doi.org/10.5281/zenodo.165135, 
Beyreuther et al., 2010), Pyrocko (https://pyrocko.org/, The Pyrocko Developers, 2017), matplotlib (https://doi.
org/10.5281/zenodo.592536, Hunter, 2007), Generic Mapping Tools (https://doi.org/10.5281/zenodo.3407865, 
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