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Supplemental Material

Seismic wave propagation forms the basis for most aspects of seismological research, yet
solving the wave equation is a major computational burden that inhibits the progress of
research. This is exacerbated by the fact that new simulations must be performed when-
ever the velocity structure or source location is perturbed. Here, we explore a prototype
framework for learning general solutions using a recently developed machine learning
paradigm called neural operator. A trained neural operator can compute a solution in
negligible time for any velocity structure or source location. We develop a scheme to train
neural operators on an ensemble of simulations performed with random velocity models
and source locations. As neural operators are grid free, it is possible to evaluate solutions
on higher resolution velocity models than trained on, providing additional computational
efficiency. We illustrate themethod with the 2D acoustic wave equation and demonstrate
the method’s applicability to seismic tomography, using reverse-mode automatic differ-
entiation to compute gradients of thewavefield with respect to the velocity structure. The
developed procedure is nearly an order of magnitude faster than using conventional
numerical methods for full waveform inversion.

Introduction
The simulation of seismic wave propagation through Earth’s

interior underlies most aspects of seismological research, from

the simulation of strong ground shaking due to large earth-

quakes (Graves and Pitarka, 2016; Rodgers et al., 2019), to

imaging the subsurface velocity structure (Fichtner et al., 2009;

Tape et al., 2009; Virieux and Operto, 2009; Lee et al., 2014;

Gebraad et al., 2020), to derivation of earthquake source prop-

erties (Duputel et al., 2015; Ye et al., 2016; Wang and Zhan,

2020). The compute costs associated with these wavefield sim-

ulations are substantial; and, for reasons of computational effi-

ciency, 1D models are often used, even when better 3D velocity

models are available. As a result, seismic wave simulations are

often the limiting factor in the pace of geophysical research.

Recently, deep learning approaches have been explored with

the goal of solving various geophysical partial differential

equations (Moseley, Markham, and Nissen-Meyer, 2020;

Moseley, Nissen-Meyer, and Markham, 2020; Smith et al.,

2020; Moseley et al., 2021). Beyond the goal of accelerating

compute capabilities, such physics-informed neural networks

may offer other advantages such as grid independence, low-

memory overhead, differentiability, and on-demand solutions.

These properties facilitate deep learning being used to solve

geophysical inverse problems (Zhu et al., 2020; Smith et al.,

2021; Xiao et al., 2021; Zhang and Gao, 2021), as a wider
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selection of algorithms and frameworks then are available for

use, such as approximate Bayesian inference techniques like

variational inference.

One of the major challenges associated with wave propaga-

tion is that a new simulation must be performed whenever the

properties of the source or velocity structure are perturbed in

some way. This alone substantially increases the necessary com-

pute costs, making some problems prohibitively expensive even

if they are mathematically or physically tractable. For the most

part, these limitations have been accepted as an inevitable part of

seismology, but now physics-informed machine learning

approaches have started to offer some pathways for moving

beyond this issue. For example, Smith et al. (2020) use a deep

neural network to solve the Eikonal equation for any source–

receiver pair by taking these locations as input. Then, this

can be exploited for hypocenter inversion by allowing for gra-

dients of the travel time field to be computed with respect to the

source location (Smith et al., 2021). However, these models are

relatively inefficient to train and even then are only able to learn

approximate solution operators to the differential equations.

The aforementioned limitations may seem surprising but

result from a basic attribute of neural networks that in fact makes

them ill-suited for solving differential equations. Specifically, neu-

ral networks are designed for learning maps between two finite-

dimensional spaces, whereas learning a general solution operator

for a differential equation requires the ability to map between two

infinite dimensional spaces (i.e., function spaces). A paradigm for

learning maps between function spaces was recently developed

(Li et al., 2020a,b, 2021) and has been termed as neural operator.

The general idea behind these models is that they have shared

parameters over all possible functions describing the initial con-

ditions, which allows them to operate on functions, even when

the inputs are a numerically discretized representation of them.

Here, we explore the potential of neural operators in

improving seismic wave propagation and inversion. We

develop a prototype framework for training neural operators

on the 2D acoustic wave equation and show that this approach

provides a suite of tantalizing new advantages over conven-

tional numerical methods for seismic wave propagation.

This study provides a proof of concept of this technology

and its application to seismology.

Preliminaries
For a given function A and a Green’s function G, let U denotes

the solution to a linear partial differential equation (PDE), that

is, the solution operator,

EQ-TARGET;temp:intralink-;df1;314;708U�x� � �LA��x� �
Z

G�x; y�A�y�dy; �1�

in which L is the corresponding linear operator. For example,

suppose that the PDE to be solved is the acoustic wave equa-

tion; and then A could describe the velocity structure as well as

the initial conditions. Neural operator generalizes this formu-

lation to the nonlinear setting in which a set of linear operators

are sequentially applied to construct a general nonlinear sol-

ution operator. In its basic form, an ℓ-layered neural operator

is constructed as follows:

EQ-TARGET;temp:intralink-;df2;314;569U�x� � Lℓ�σ�Lℓ−1…σ�L1V�…���x�; �2�

in which Li is such that for any function V, we have,

EQ-TARGET;temp:intralink-;df3;314;513�LiV��x� � Wi�x� �
Z

Ki�x; y�V�y�dy: �3�

Under this framework,Wi�x� and Ki�x; y� constitute the learn-
able components of the neural operator and allow for a solu-

tion to be produced for any prescribed function A. In a limited

sense, neural operators can be viewed as generalized Green’s

functions.

Methods
We designed a framework that applies neural operators to the

2D acoustic wave equation. The basic idea for this procedure is

outlined schematically in Figure 1. A specific type of neural

operator called a Fourier neural operator (FNO; Li et al.,

2021) receives a velocity model specified on an arbitrary, pos-

sibly irregular mesh, along with the coordinates of a point

source. One of the main features of FNO is that the major cal-

culations are performed in the frequency domain that allows

the convolutions in equation (3) to be rapidly computed. The

output of the FNO is the complete wavefield solution, which

can be queried anywhere within the medium, regardless of

whether the points lie on the input mesh.

The most basic component of the FNO is a Fourier block

(Fig. 1), which first transforms an input function (V) to the

Fourier domain. In the first layer of the network, V is equal

to the initial conditions A. Then, a kernel (Ki) is computed

specifically for this function and is truncated at low order,

before performing the integration via multiplication. Finally,

the result is transformed back and a nonlinear activation func-

tion is applied, which concludes the Fourier block. For this

study, the architecture of the FNO contains four sequential

Fourier blocks and applies a Rectified Linear Unit (ReLU)
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activation to the output of each (Fig. 1). We note that the trun-

cation of the Fourier modes is performed on the function val-

ues after lifting them to a higher dimensional space, rather than

the raw input function, so that this does not lead to compres-

sion. We refer the interested readers to Li et al. (2021) for more

mathematical details about the FNO.

We constructed a training dataset of simulations to learn

from by first generating random velocity models. We set up

a 64 × 64 grid with 0.16 km spacing to define the velocity

model. Then, we created 5000 random velocity models by sam-

pling random fields having a von Karman covariance function

with the following parameters: Hurst exponent κ � 0:5, corre-
lation length a � �ax; ay� � �1:6 km; 1:6 km�, and ε � 0:1,
μ � 3 km=s, and σ � 0:15 km=s. Then, for each of these

velocity models, we apply a Ricker wavelet source at a random

point and solve the acoustic wave equation using a spectral

element method (SEM; Afanasiev et al., 2019). It should be

noted that there is a source grid used, because this is a require-

ment of the SEM. Because Gaussian random fields (GRFs) can

represent all continuous functions, the purpose of these steps is

( )

Figure 1. Our approach applying Fourier neural operator (FNO) to the 2D
acoustic wave equation. The inputs to the FNO model are the velocity
model with dimensions d × d × 1 and the source location, indicated by the
white star. The input velocity model is lifted to a higher dimensional space
with size d × d × w using a neural network. Then, we apply four Fourier
operator layers and finally project back to the target wavefield dimen-
sions of d × d × N using a neural network. The bottom panel shows
details of the Fourier layer architecture; we define v to be the input. On
top: We apply a Fourier transform F to v and then apply a linear trans-
formation R to the lower Fourier modes, filtering out higher modes. Then,
we apply an inverse Fourier transform F−1. On the bottom, we apply a
local linear transform W to v.
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to create a suite of simulations that span a range of possible

conditions. We show later that they can even well approximate

strongly discontinuous velocity models. An example velocity

model and simulation is shown in Figure 1. Applying the afore-

mentioned procedure results in a training dataset of 5000 data

samples, each of which is a different simulation.

Given the simulation dataset, we can proceed to train an

FNO model in a supervised capacity, in which the goal is to

learn a model that can reliably output a solution to the wave

equation for arbitrary input conditions. The training is per-

formed using batch gradient descent, for which the parameters

of the FNO are updated to minimize the error against the

“true” spectral element solutions. A mean-square error loss

function is used. We use a batch size of 30 simulations and

train the model for a maximum of 300 epochs. We use all

but 200 of the simulations for training and set aside the

remainder for cross validation of the model. The time required

to train the model from scratch is approximately 18 hr using

six NVIDIA Tesla V100 graphical processing units (GPUs).

Experiments
Initial wavefield demonstration
Figure 2 shows two example wavefields corresponding to two

different velocity models, each with a different source. The spec-

tral element solution is shown alongside the wavefield predicted

by the FNO for the eight different receivers (blue triangles). For

these examples, the input velocity model is 64 × 64. The relative

ℓ2 loss of the FNO wavefields are 0.180 and 0.363. These exam-

ples are representative of the entire validation dataset, which has

a loss of 0.273 relative to the spectral element solutions.

The number of simulations needed for training
Once fully trained, the FNO can evaluate a new solution in a

fraction of a second, and thus the time to train the FNO will be

the vast majority of the needed compute time. A primary con-

cern about the computational demands of the FNO approach

is, therefore, the number of simulations needed for training.

Here, we examine how the number of training simulations

influences the accuracy of the solution. We create a series

of tests in which the number of training simulations is varied

from 1200 at the fewest to 4800 at the most. The results are

shown in Figure 3, in which we show the FNO wavefield pre-

dictions for each dataset. Even with 1200 training samples,

there is no indication that there is overfitting, because the

training waveform error is similar across different models

(Fig. 3a,b). Training using just 1200 simulations is able to

predict the major arrival. Increasing number of training sam-

ples provides a better fit of the reflections (e.g., 3.2 s in Fig. 3c).

Generalization to arbitrary velocity models
The FNO was trained only on velocity models drawn from

Gaussian random fields; and, although this family of functions

is broad, it does not include some types of functions that exist

in the Earth, such as discontinuous functions. This raises the

question of whether the FNO can still generalize well to these

cases. Figure 4a–c shows an example of a predicted wavefield

for a velocity model containing a constant velocity square

embedded within a homogeneous medium. Although the

velocity model itself is rather simple, it is actually very far

removed from the characteristics of the random fields that

the FNO was trained on and represents a challenging example.

We can see that the predicted wavefield does a very good job of

approximating the wavefield compared to the ground truth.

We believe that the small residual errors can be reduced with

better hyperparameter selection.

Generalization to higher resolution grids
FNO can be viewed in some sense as a method for learning gen-

eralized Green’s functions valid for arbitrary boundary condi-

tions. Because it is intrinsically learning a mapping between

function spaces, the FNO is theoretically independent of the res-

olution at which the functions are discretized (this is only a

requirement for evaluation on a computer). One important

advantage of this is that the FNO can be trained on velocity

models with a certain grid spacing and then be evaluated on

velocity models with a different grid spacing at inference time.

Here, we are not simply talking about interpolating the wavefield

after solving the PDE; but, rather, the solutions to the PDE can

actually be evaluated on a higher resolution velocity model with

negligible extra compute cost. To demonstrate this, Figure 4d–f

shows the FNO prediction for a random velocity field with 2×

higher resolution (128 × 128) than themodels used during train-

ing, alongside the spectral element solution. The FNO solution

closely approximates the spectral element solution. The velocity

models with different meshes have the same roughness as the

training data set. Resolving more rough structure with denser

spacing can be achieved by training with many more GRFs with

varying correlation length scales and variance.

Full waveform inversion with neural operators
One of the most useful applications of wavefield simulations is

in inversion, to image the Earth’s interior. The adjoint-state
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method is an approach to efficiently compute the gradients of

an objective function with respect to parameters of interest and

can be used for seismic tomography (e.g., Tape et al., 2009;

Gebraad et al., 2020). Neural operators are differentiable by

design, which enables gradient computation with reverse-

mode automatic differentiation. Automatic differentiation

has been shown to be mathematically equivalent to the

adjoint-state method (Zhu et al., 2021). This allows for the gra-

dients of the wavefield to be determined with respect to the

inputs (velocity model and source location).

Figure 5 demonstrates our full waveform inversion (FWI)

performance. For each case, we compute synthetic observations

using the source distribution as shown (red circles), taking every

point in the 64 × 64 grid as a receiver. The observations are

noise-free for this experiment. Then, we perform tomography

(a) (b) (d)

(c) (f)

(e)

Figure 2. Examples of two validation wavefield simulations from the
trained FNO model. (a) The source–receiver locations with receivers in
blue and source in red, (b) the velocity structure, (c) waveforms simulated
with spectral element method (SEM; black) and FNO (red), and (d–f) same
as (a–c), but for a different velocity model. The relative ℓ2 loss of the two
examples are 0.180 and 0.363, respectively, which are representative of
the entire validation data set with an average ℓ2 loss of 0.273. We
demonstrate that the FNO simulation results are able to capture both the
major arrivals as well as some reflections.
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by starting with a homogeneous initial velocity model and for-

ward propagating a wavefield with the FNO for each source. We

calculate the loss L � P
i

P
j�uobs�xi; xj� − upred�xi; xj��2 and

compute ∇L with automatic differentiation. The velocity model

is then iteratively updated with gradient descent for 1000 iter-

ations using the Adam optimizer (Kingma and Ba, 2014) and a

learning rate of 0.01. For comparison, Figure 5a,b shows the

imaging result using SEM and adjoint-state method, with a

relative ℓ2 misfit between the inverted and true velocity model

of 0.0289. Figure 5c,d shows the result for the same velocity

structure using FNO and automatic differentiation, with a misfit

of 0.0319. Figure 5e,f is designed to demonstrate sharp discon-

tinuous changes with a short wavelength. The results demon-

strate the remarkable capabilities of FNO to learn a general

solution operator.

We note that our FWI approach neither requires an adjoint

wavefield to be computed nor a cross correlation; the gradients

can be rapidly computed with GPUs using automatic differen-

tiation. The rapid simulation makes it substantially more effi-

cient than adjoint methods. For these experiment, 20 sources

take ∼1 s for one tomographic iteration, including the costs of

computing the forward model, whereas the spectral element

method with adjoint methods takes ∼100 s for one tomo-

graphic iteration. These time measurements are from using

only a single NVIDIA Tesla V100 GPU.

Discussion
This study presents a prototype framework for applying neural

operators to the 2D acoustic wave equation. We anticipate that

the general framework would also be suitable for the 3D

elastic-wave equation with relatively little modification.

Indeed, the FNO method was applied successfully to the

Navier–Stokes equations (Li et al., 2021), which can be more

challenging to solve than the elastic-wave equation. In our

tests, we found that only a few thousand simulations were

needed to train an FNO model and, from there, required neg-

ligible time to compute a new solution. Because FNO can be

trained on lower resolution simulations and then generalize to

higher resolution solutions once trained, this results in sub-

stantially faster computations than using traditional numerical

methods at the full resolution.

One of the limitations of the approach is that the solutions

are approximate, as seen in several of the figures. However,

because this is a learning-based approach, the performance

can be improved in the future using a better model architec-

ture, thorough tuning of hyperparameters, improving the size

of the training dataset, using a more appropriate objective

function, and various other factors. In addition, as new devel-

opments within machine learning emerge in this area, they

would be able to be incorporated. Thus, these performance

(a) (b) (c)

Figure 3. Model performance as a function of the number of training
samples. (a) Training and validation loss curves as a function of different
numbers of training samples. (b) Example waveform fitting of a single
training example from models trained with varying number of training
examples. (c) Example waveform fitting of a single validation example
from models trained with varying number of training examples. The
numbers to the right of each waveform shows the relative ℓ2 misfit. This
shows that the model trained on 4800 samples is able to capture the
reflections, whereas the model trained on smaller number of samples
does not generalize to reflections in the validation example.
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metrics should only be viewed as a starting point. For some

applications, the error may be enough of an issue, and tradi-

tional numerical methods may be preferable; however, for

many other situations in geophysics, a reasonably accurate sol-

ution may be acceptable.

Among the most exciting benefits of our approach is that by

training the FNO on random velocity models, the FNO is able to

produce solutions for arbitrary velocity models. This is because

FNO learns a general solution operator to the PDE and not spe-

cifically the velocity model. This means that the model does not

need to be retrained for each region. Thus, the approach offers

the potential for a single FNO model to be used by the entire

seismology community for any region of a similar size. Although

the initial cost of training an FNO and performing the training

simulations may be expensive, it only needs to be done a single

time for the community as a whole.

(a)

(c) (f)

(b) (d) (e)

Figure 4. Model generalization experiments. (a) The source–receiver
locations with receivers in blue and source in red, (b) a velocity model with
a homogeneous background of 3 km/s and a 5% square anomaly,
(c) waveform simulated with SEM (black) and FNO (red), and (d–f) same as
(a–c), but for an input velocity model with 2× finer resolution than trained
on. These experiments show that the model is not just memorizing the
solutions, but is able to generalize to entirely new conditions.
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Data and Resources
All the data presented in this study are synthetic and available

upon request. The supplemental material for this article dem-

onstrates that the misfit between the simulations using spectral

element method (SEM) and the Fourier neural operator (FNO)

is minimal.

Declaration of Competing Interests
The authors declare that there are no competing interests.

Acknowledgments
The authors thank Jack Muir for helpful comments on an

early version of the article.

References
Afanasiev, M., C. Boehm, M. van Driel, L. Krischer, M. Rietmann, D.

A. May, M. G. Knepley, and A. Fichtner (2019). Modular and

flexible spectral-element waveform modelling in two and three
dimensions, Geophys. J. Int. 216, no. 3, 1675–1692, ISSN 0956-
540X, doi: 10.1093/gji/ggy469.

Duputel, Z., J. Jiang, R. Jolivet, M. Simons, L. Rivera, J.-P. Ampuero, B.
Riel, S. E. Owen, A. W. Moore, S. V. Samsonov, et al. (2015). The
Iquique earthquake sequence of April 2014: Bayesian modeling
accounting for prediction uncertainty, Geophys. Res. Lett. 42,
no. 19, 7949–7957, ISSN 1944-8007, doi: 10.1002/2015GL065402.

Fichtner, A., B. L. N. Kennett, H. Igel, andH.-P. Bunge (2009). Full seismic
waveform tomography for upper-mantle structure in the Australasian
region using adjoint methods, Geophys. J. Int. 179, no. 3, 1703–1725,
ISSN 0956-540X, doi: 10.1111/j.1365-246X.2009.04368.x.

Gebraad, L., C. Boehm, and A. Fichtner (2020). Bayesian elastic full-
waveform inversion using Hamiltonian Monte Carlo, J. Geophys.
Res. 125, no. 3, e2019JB018428, ISSN 2169-9356, doi: 10.1029/
2019JB018428.

Graves, R., and A. Pitarka (2016). Kinematic ground-motion simula-
tions on Rough Faults including effects of 3D stochastic velocity
perturbations, Bull. Seismol. Soc. Am. 106, no. 5, 2136–2153,
GeoScienceWorld, ISSN 0037-1106, doi: 10.1785/0120160088.

Kingma, D. P., and J. Ba (2014). Adam: A method for stochastic otim-
ization, available at http://arxiv.org/abs/1412.6980 (last accessed
August 2021).

Lee, E.-J., P. Chen, T. H. Jordan, P. B. Maechling, M. A. M. Denolle,
and G. C. Beroza (2014). Full-3-D tomography for crustal struc-
ture in Southern California based on the scattering-integral and
the adjoint-wavefield methods, J. Geophys. Res. 119, no. 8,
6421–6451, ISSN 2169-9356, doi: 10.1002/2014JB011346.

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A.
Stuart, and A. Anandkumar (2020a). Multipole graph neural oper-
ator for parametric partial differential equations, available at
http://arxiv.org/abs/2006.09535 (last accessed August 2021).

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A.
Stuart, and A. Anandkumar (2020b). Neural operator: Graph ker-
nel network for partial differential equations, available at http://
arxiv.org/abs/2003.03485 (last accessed August 2021).

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A.
Stuart, and A. Anandkumar (2021). Fourier neural operator for
parametric partial differential equations, available at http://arxiv
.org/abs/2010.08895 (last accessed August 2021).

Moseley, B., A. Markham, and T. Nissen-Meyer (2020). Solving the
wave equation with physics-informed deep learning, available at
http://arxiv.org/abs/2006.11894 (last accessed August 2021).

Moseley, B., A. Markham, and T. Nissen-Meyer (2021). Finite Basis
Physics-Informed Neural Networks (FBPINNs): A scalable domain
decomposition approach for solving differential equations, available
at http://arxiv.org/abs/2107.07871 (last accessed August 2021).

Moseley, B., T. Nissen-Meyer, and A. Markham (2020). Deep learning
for fast simulation of seismic waves in complex media, Solid Earth
11, no. 4, 1527–1549, ISSN 1869-9510, Copernicus GmbH, doi:
10.5194/se-11-1527-2020.

Rodgers, A. J., N. Anders Petersson, A. Pitarka, D. B. McCallen, B.
Sjogreen, and N. Abrahamson (2019). Broadband (0–5 Hz)

(a) (b)

(c) (d)

(e) (f)

Figure 5. Example of a full waveform inversion using FNO. (a,c,e) True
velocity models with source locations indicated by red circles and receivers
placed at every node of the 64 × 64 grid (10 km × 10 km region).
(b) Reconstruction using SEM and adjoint tomography. (d,f) Reconstruction
using FNO as the forward model and automatic differentiation to compute
gradients. No regularization is used for these experiments.

https://www.seismosoc.org/publications/the-seismic-record/ • DOI: 10.1785/0320210026 The Seismic Record 133

Downloaded from http://pubs.geoscienceworld.org/ssa/tsr/article-pdf/1/3/126/5455773/tsr-2021026.1.pdf
by California Institute of Technology  user
on 01 May 2023

http://dx.doi.org/10.1093/gji/ggy469
http://dx.doi.org/10.1002/2015GL065402
http://dx.doi.org/10.1111/j.1365-246X.2009.04368.x
http://dx.doi.org/10.1029/2019JB018428
http://dx.doi.org/10.1029/2019JB018428
http://dx.doi.org/10.1785/0120160088
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1002/2014JB011346
http://arxiv.org/abs/2006.09535
http://arxiv.org/abs/2006.09535
http://arxiv.org/abs/2006.09535
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2006.11894
http://arxiv.org/abs/2006.11894
http://arxiv.org/abs/2006.11894
http://arxiv.org/abs/2107.07871
http://arxiv.org/abs/2107.07871
http://arxiv.org/abs/2107.07871
http://dx.doi.org/10.5194/se-11-1527-2020
https://www.seismosoc.org/publications/the-seismic-record/


fully deterministic 3D ground-motion simulations of a magnitude
7.0 Hayward fault earthquake: Comparison with empirical
ground-motion models and 3D path and site effects from source
normalized intensities, Seismol. Res. Lett. 90, no. 3, 1268–1284,
GeoScienceWorld, ISSN 0895-0695, doi: 10.1785/0220180261.

Smith, J. D., K. Azizzadenesheli, and Z. E. Ross (2020). EikoNet:
Solving the Eikonal equation with deep neural networks, IEEE
Trans. Geosci. Remote Sens. 1–12, ISSN 1558-0644, doi:
10.1109/TGRS.2020.3039165.

Smith, J. D., Z. E. Ross, K. Azizzadenesheli, and J. B. Muir (2021).
HypoSVI: Hypocenter inversion with Stein variational inference
and Physics Informed Neural Networks, available at http://arxiv
.org/abs/2101.03271 (last accessed August 2021).

Tape, C., Q. Liu, A. Maggi, and J. Tromp (2009). Adjoint tomography
of the Southern California Crust, Science 325, no. 5943, 988–992,
ISSN 0036-8075, 1095-9203, doi: 10.1126/science.1175298.

Virieux, J., and S. Operto (2009). An overview of full-waveform inver-
sion in exploration geophysics, Geophysics 74, no. 6, WCC1–
WCC26, Society of Exploration Geophysicists, ISSN 0016-8033,
doi: 10.1190/1.3238367.

Wang, X., and Z. Zhan (2020). Moving from 1-D to 3-D velocity
model: Automated waveform-based earthquake moment tensor
inversion in the Los Angeles region, Geophys. J. Int. 220, no. 1,
218–234, ISSN 0956-540X, doi: 10.1093/gji/ggz435.

Xiao, C., Y. Deng, and G. Wang (2021). Deep-learning-based adjoint
state method: Methodology and preliminary application to inverse
modeling, Water Resour. Res. 57, no. 2, e2020WR027400, ISSN
1944-7973, doi: 10.1029/2020WR027400.

Ye, L., T. Lay, H. Kanamori, and L. Rivera (2016). Rupture
characteristics of major and great mw ≥ 7.0 megathrust earth-
quakes from 1990 to 2015: 2. Depth dependence, J. Geophys.
Res. 121, no. 2, 2015JB012427, ISSN 2169-9356, doi: 10.1002/
2015JB012427.

Zhang, W., and J. Gao (2021). Deep-learning full-waveform inversion
using seismic migration images, IEEE Trans. Geosci. Remote Sens.
1–18, ISSN 1558-0644, doi: 10.1109/TGRS.2021.3062688.

Zhu, W., K. Xu, E. Darve, and G. C. Beroza (2021). A general
approach to seismic inversion with automatic differentiation,
Comput. Geosci. 151, 104,751.

Zhu, W, K. Xu, E. Darve, B. Biondi, and G. C. Beroza (2020).
Integrating deep neural networks with full-waveform inversion:
Reparametrization, regularization, and uncertainty quantification,
available at http://arxiv.org/abs/2012.11149 (last accessed August
2021).

Manuscript received 17 August 2021

Published online 2 November 2021

https://www.seismosoc.org/publications/the-seismic-record/ • DOI: 10.1785/0320210026 The Seismic Record 134

Downloaded from http://pubs.geoscienceworld.org/ssa/tsr/article-pdf/1/3/126/5455773/tsr-2021026.1.pdf
by California Institute of Technology  user
on 01 May 2023

http://dx.doi.org/10.1785/0220180261
http://dx.doi.org/10.1109/TGRS.2020.3039165
http://arxiv.org/abs/2101.03271
http://arxiv.org/abs/2101.03271
http://arxiv.org/abs/2101.03271
http://dx.doi.org/10.1126/science.1175298
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1093/gji/ggz435
http://dx.doi.org/10.1029/2020WR027400
http://dx.doi.org/10.1002/2015JB012427
http://dx.doi.org/10.1002/2015JB012427
http://dx.doi.org/10.1109/TGRS.2021.3062688
http://arxiv.org/abs/2012.11149
http://arxiv.org/abs/2012.11149
http://arxiv.org/abs/2012.11149
https://www.seismosoc.org/publications/the-seismic-record/

